STRINGSTRING
fadA fadA fadN fadN atpC atpC ganA ganA acdA acdA galE galE rhgZ rhgZ yngJ yngJ mmgC mmgC ktrB ktrB fadE fadE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
fadAacetyl-CoA C-acyltransferase; Involved in the degradation of long-chain fatty acids; Belongs to the thiolase-like superfamily. Thiolase family. (391 aa)
fadNenoyl-CoA hydratase / 3-hydroxyacyl-CoA dehydrogenase; Involved in the degradation of long-chain fatty acids; Belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (789 aa)
atpCATP synthase (subunit epsilon, F1 subunit); Produces ATP from ADP in the presence of a proton gradient across the membrane. (132 aa)
ganAArabinogalactan type I oligomer exo-hydrolase (beta-galactosidase, lactase); Hydrolyzes oligosaccharides released by the endo-1,4-beta- galactosidase GalA from arabinogalactan type I, a pectic plant polysaccharide. It is unable to use lactose as a sole carbon source. Maximal activity with o-nitrophenyl-beta-D-galactopyranoside (ONPG) and p-nitrophenyl-beta-D-galactopyranoside (PNPG) as substrates, trace activity with p-nitrophenyl-alpha-L-arabinopyranoside and o- nitrophenyl-beta-D-fucopyranoside as substrates, but no activity with p-nitrophenyl-alpha-D-galactopyranoside, p-nitrophenyl [...] (687 aa)
acdAacyl-CoA dehydrogenase; Involved in the degradation of long-chain fatty acids. (379 aa)
galEUDP-glucose 4-epimerase; Involved in the metabolism of galactose. Catalyzes the conversion of UDP-galactose (UDP-Gal) to UDP-glucose (UDP-Glc) through a mechanism involving the transient reduction of NAD (By similarity). (339 aa)
rhgZBeta-galacturonidase; May play a role in the degradation of rhamnogalacturonan derived from plant cell walls; Belongs to the glycosyl hydrolase 42 family. (663 aa)
yngJacyl-CoA dehydrogenase, short-chain specific; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the acyl-CoA dehydrogenase family. (380 aa)
mmgCShort chain acyl-CoA dehydrogenase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the acyl-CoA dehydrogenase family. (379 aa)
ktrBPotassium transporter ATPase; Integral membrane subunit of the KtrAB potassium uptake transporter. The 2 major potassium transporter complexes KtrAB and KtrCD confer resistance to both suddenly imposed and prolonged osmotic stress. (445 aa)
fadEacyl-CoA dehydrogenase (FAD dependent); Involved in the degradation of long-chain fatty acids. (594 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (34%) [HD]