STRINGSTRING
tcyA tcyA cysK cysK yckB yckB pspA pspA lplA lplA lplB lplB acoL acoL pdhD pdhD lpdV lpdV arsC arsC icd icd tcyK tcyK tcyJ tcyJ yuiH yuiH thrC thrC liaH liaH trxB trxB hag hag rbsD rbsD ahpC ahpC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
tcyACystine ABC transporter (substrate-binding lipoprotein); Part of the ABC transporter complex TcyABC involved in L- cystine import. (268 aa)
cysKCysteine synthase; Catalyzes the conversion of O-acetylserine to cysteine. Also acts as a sensor of cysteine availability in the signal transduction pathway modulating CymR activity. When cysteine is present, the pool of O-acetylserine (OAS) is low, which leads to the formation of a CymR- CysK complex and transcriptional repression of the CymR regulon occurs. In the absence of cysteine, the OAS pool is high and the CymR-CysK complex is mostly dissociated, leading to a faster dissociation of CymR from its DNA targets and the lifting of CymR-dependent repression. (308 aa)
yckBPutative ABC transporter (binding lipoprotein); Probably part of a binding-protein-dependent transport system; Belongs to the bacterial solute-binding protein 3 family. (287 aa)
pspAPhage shock protein A homolog; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type h: extrachromosomal origin. (227 aa)
lplALipoprotein; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type lp: lipoprotein. (502 aa)
lplBPutative ABC transporter (permease); Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pt: putative transporter. (318 aa)
acoLAcetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (458 aa)
pdhDDihydrolipoyl dehydrogenase; Catalyzes the oxidation of dihydrolipoamide to lipoamide; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (470 aa)
lpdVBranched-chain alpha-keto acid dehydrogenase E3 subunit (dihydrolipoamide dehydrogenase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of 3 enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3); Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (474 aa)
arsCThioredoxin-coupled arsenate reductase; Catalyzes the reduction of arsenate [As(V)] to arsenite [As(III)]. In vitro, can dephosphorylate para- nitrophenyl phosphate (pNPP). Belongs to the low molecular weight phosphotyrosine protein phosphatase family. Thioredoxin-coupled ArsC subfamily. (139 aa)
icdIsocitrate dehydrogenase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (423 aa)
tcyKSulfur-containing amino acid ABC transporter binding lipoprotein; Part of the ABC transporter complex TcyJKLMN involved in L- cystine import. Is also involved in cystathionine, djenkolate, and S- methylcysteine transport; Belongs to the bacterial solute-binding protein 3 family. (270 aa)
tcyJSulfur containing amino acid ABC transporter binding lipoprotein; Part of the ABC transporter complex TcyJKLMN involved in L- cystine import. Is also involved in cystathionine, djenkolate, and S- methylcysteine transport; Belongs to the bacterial solute-binding protein 3 family. (269 aa)
yuiHPutative enzymes similar to sulfite oxidase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (198 aa)
thrCThreonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. (352 aa)
liaHModulator of liaIHGFSR (yvqIHGFEC) operon expression; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type f: factor. (225 aa)
trxBThioredoxin reductase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. (316 aa)
hagFlagellin protein; Flagellin is the subunit which polymerizes to form the filaments of bacterial flagella. Assembly into flagella requires FliW. Acts as a homeostatic autoinhibitory regulator to control its own cytoplasmic levels. Partner switching by flagellin between FliW and CsrA provides a flagellar assembly checkpoint to tightly control the timing of flagellin synthesis. Flagellin binds to assembly factor FliW, freeing translation regulator CsrA to repress translation of the flagellin mRNA. When the flagellar hook is assembled flagellin is secreted, depleting intracellular flagell [...] (304 aa)
rbsDRibose ABC transporter (membrane bound ribose binding); Catalyzes the interconversion of beta-pyran and beta-furan forms of D-ribose. (131 aa)
ahpCAlkyl hydroperoxide reductase (small subunit); Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. (187 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (12%) [HD]