STRINGSTRING
clpP clpP clpC clpC ctsR ctsR clpE clpE groEL groEL rpsG rpsG groES groES queD queD dnaK dnaK clpX clpX ddl ddl
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
clpPATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a limited peptidase activity in the absence of ATP-binding subunits ClpC, ClpE or ClpX. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity). ClpXP is involved in the complete degradation of the site-2 clipped anti-sigma-W factor RsiW. This results in the release of SigW and the transcriptional activation of genes under the control of the sigma-W factor. Probably the major protease that degrades prot [...] (197 aa)
clpCClass III stress response-related ATPase, AAA+ superfamily; Competence gene repressor; required for cell growth at high temperature. Negative regulator of comK expression. May interact with MecA to negatively regulate comK; Belongs to the ClpA/ClpB family. ClpC subfamily. (810 aa)
ctsRTranscriptional regulator; Controls the expression of the cellular protein quality control genes clpC, clpE and clpP, as well as mcsA and mcsB. Acts as a repressor of these class III stress genes by binding to a directly repeated heptanucleotide operator sequence (A/GGTCAAA NAN A/GGTCAAA). After heat shock, CtsR is degraded by the ClpCP and ClpEP proteolytic systems, ensuring the derepression of clpE, clpP and the clpC operon. CtsR negatively autoregulates its own synthesis. (154 aa)
clpEATP-dependent Clp protease (class III stress gene); ATPase essential both for efficient CtsR-dependent gene derepression during heat stress and for rerepression. Together with ClpP, degrades the global regulator CtsR after heat shock. Is also involved in disaggregation of heat-denatured proteins. Has thus a role in overall protein quality control in response to heat stress. (699 aa)
groELChaperonin large subunit; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (544 aa)
rpsGRibosomal protein S7 (BS7); One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
groESChaperonin small subunit; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter; Belongs to the GroES chaperonin family. (94 aa)
queD6-carboxy-5,6,7,8-tetrahydropterin synthase; Catalyzes the conversion of 7,8-dihydroneopterin triphosphate (H2NTP) to 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) and acetaldehyde. Belongs to the PTPS family. QueD subfamily. (149 aa)
dnaKMolecular chaperone; Acts as a chaperone; Belongs to the heat shock protein 70 family. (611 aa)
clpXProtein unfolding ATPase required for presentation of proteins to proteases; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (By similarity). Probably the major protease that degrades proteins tagged by trans-translation. (420 aa)
ddlD-alanyl-D-alanine ligase A; Cell wall formation. (354 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (24%) [HD]