node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
accB | pycA | BSU24350 | BSU14860 | acetyl-CoA carboxylase subunit (biotin carboxyl carrier subunit); This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA (By similarity). Binds biotin. | Pyruvate carboxylase; Catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second, leading to oxaloacetate production. Fulfills an anaplerotic function in B.subtilis as it is necessary for growth on glucose, but is not required for sporulation. | 0.544 |
prsW | rseP | BSU22940 | BSU16560 | Protease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | 0.920 |
prsW | rsiW | BSU22940 | BSU01740 | Protease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] | anti-sigma(W) factor; The anti-sigma factor for extracytoplasmic function (ECF) sigma factor sigma-W (SigW). Holds SigW, its cognate ECF sigma factor, in an inactive form until released by regulated intramembrane proteolysis (RIP). SigW and RsiW mediate cell response to cell wall stress. RIP occurs when an extracytoplasmic signal triggers a concerted proteolytic cascade to transmit information and elicit cellular responses. The membrane-spanning regulatory substrate protein is first cut periplasmically (site-1 protease, S1P, PrsW) , then within the membrane itself (site-2 protease, S2P [...] | 0.993 |
prsW | sipS | BSU22940 | BSU23310 | Protease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] | Type I signal peptidase; Not essential for cell viability, but required for efficient secretion of many proteins. | 0.577 |
prsW | sipT | BSU22940 | BSU14410 | Protease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] | Type I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. | 0.433 |
pycA | accB | BSU14860 | BSU24350 | Pyruvate carboxylase; Catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second, leading to oxaloacetate production. Fulfills an anaplerotic function in B.subtilis as it is necessary for growth on glucose, but is not required for sporulation. | acetyl-CoA carboxylase subunit (biotin carboxyl carrier subunit); This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA (By similarity). Binds biotin. | 0.544 |
pycA | thrC | BSU14860 | BSU32250 | Pyruvate carboxylase; Catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second, leading to oxaloacetate production. Fulfills an anaplerotic function in B.subtilis as it is necessary for growth on glucose, but is not required for sporulation. | Threonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. | 0.419 |
rseP | prsW | BSU16560 | BSU22940 | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | Protease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] | 0.920 |
rseP | rsiW | BSU16560 | BSU01740 | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | anti-sigma(W) factor; The anti-sigma factor for extracytoplasmic function (ECF) sigma factor sigma-W (SigW). Holds SigW, its cognate ECF sigma factor, in an inactive form until released by regulated intramembrane proteolysis (RIP). SigW and RsiW mediate cell response to cell wall stress. RIP occurs when an extracytoplasmic signal triggers a concerted proteolytic cascade to transmit information and elicit cellular responses. The membrane-spanning regulatory substrate protein is first cut periplasmically (site-1 protease, S1P, PrsW) , then within the membrane itself (site-2 protease, S2P [...] | 0.979 |
rseP | sipS | BSU16560 | BSU23310 | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | Type I signal peptidase; Not essential for cell viability, but required for efficient secretion of many proteins. | 0.890 |
rseP | sipT | BSU16560 | BSU14410 | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | Type I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. | 0.842 |
rseP | sipU | BSU16560 | BSU04010 | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | Type I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. | 0.782 |
rseP | sipV | BSU16560 | BSU10490 | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | Type I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. | 0.802 |
rsiW | prsW | BSU01740 | BSU22940 | anti-sigma(W) factor; The anti-sigma factor for extracytoplasmic function (ECF) sigma factor sigma-W (SigW). Holds SigW, its cognate ECF sigma factor, in an inactive form until released by regulated intramembrane proteolysis (RIP). SigW and RsiW mediate cell response to cell wall stress. RIP occurs when an extracytoplasmic signal triggers a concerted proteolytic cascade to transmit information and elicit cellular responses. The membrane-spanning regulatory substrate protein is first cut periplasmically (site-1 protease, S1P, PrsW) , then within the membrane itself (site-2 protease, S2P [...] | Protease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] | 0.993 |
rsiW | rseP | BSU01740 | BSU16560 | anti-sigma(W) factor; The anti-sigma factor for extracytoplasmic function (ECF) sigma factor sigma-W (SigW). Holds SigW, its cognate ECF sigma factor, in an inactive form until released by regulated intramembrane proteolysis (RIP). SigW and RsiW mediate cell response to cell wall stress. RIP occurs when an extracytoplasmic signal triggers a concerted proteolytic cascade to transmit information and elicit cellular responses. The membrane-spanning regulatory substrate protein is first cut periplasmically (site-1 protease, S1P, PrsW) , then within the membrane itself (site-2 protease, S2P [...] | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | 0.979 |
sipS | prsW | BSU23310 | BSU22940 | Type I signal peptidase; Not essential for cell viability, but required for efficient secretion of many proteins. | Protease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] | 0.577 |
sipS | rseP | BSU23310 | BSU16560 | Type I signal peptidase; Not essential for cell viability, but required for efficient secretion of many proteins. | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | 0.890 |
sipT | prsW | BSU14410 | BSU22940 | Type I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. | Protease required for RsiW anti-sigma(W) degradation; Involved in the degradation of anti-sigma-W factor RsiW. Responsible for Site-1 cleavage of the RsiW anti-sigma factor. This results, after two other proteolytic steps catalyzed by the RasP and ClpXP proteases, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Seems to be responsible for sensing antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress. Therefore it is a protease governing regulated intramembrane proteolysis and r [...] | 0.433 |
sipT | rseP | BSU14410 | BSU16560 | Type I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | 0.842 |
sipU | rseP | BSU04010 | BSU16560 | Type I signal peptidase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the peptidase S26 family. | Regulator of sigma-W protease RasP; Is responsible for site-2 cleavage of the RsiW anti-sigma factor. This results, after a third proteolytic step catalyzed by the ClpXP protease, in the release of SigW and the transcription activation of the genes under the control of the sigma-W factor. Can also cleave liberated signal peptides of PenP and Mpr, probably within in the cell membrane. | 0.782 |