node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
lytC | lytE | BSU35620 | BSU09420 | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | Cell wall hydrolase; Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan (By similarity). Seems to play a role in cell separation during vegetative growth. | 0.943 |
lytC | lytF | BSU35620 | BSU09370 | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | gamma-D-glutamate-meso-diaminopimelate muropeptidase (major autolysin); Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan. LytF is necessary and sufficient for vegetative daughter cell separation, and also seems to play a role in cell autolysis. | 0.970 |
lytE | lytC | BSU09420 | BSU35620 | Cell wall hydrolase; Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan (By similarity). Seems to play a role in cell separation during vegetative growth. | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | 0.943 |
lytF | lytC | BSU09370 | BSU35620 | gamma-D-glutamate-meso-diaminopimelate muropeptidase (major autolysin); Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan. LytF is necessary and sufficient for vegetative daughter cell separation, and also seems to play a role in cell autolysis. | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | 0.970 |
mgsR | ydaD | BSU24770 | BSU04190 | Transcriptional regulator of stress; Regulates transcription of a subregulon within the general stress response. Exerts positive and negative effects in response to ethanol stress. | Putative dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. | 0.499 |
mgsR | ydaG | BSU24770 | BSU04220 | Transcriptional regulator of stress; Regulates transcription of a subregulon within the general stress response. Exerts positive and negative effects in response to ethanol stress. | Putative general stress protein; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative factor. | 0.760 |
mgsR | ydbD | BSU24770 | BSU04430 | Transcriptional regulator of stress; Regulates transcription of a subregulon within the general stress response. Exerts positive and negative effects in response to ethanol stress. | Putative manganese-containing catalase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the manganese catalase family. | 0.501 |
mgsR | yhdF | BSU24770 | BSU09450 | Transcriptional regulator of stress; Regulates transcription of a subregulon within the general stress response. Exerts positive and negative effects in response to ethanol stress. | Putative NAD(P)-dependent dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the short-chain dehydrogenases/reductases (SDR) family. | 0.420 |
mgsR | yhxD | BSU24770 | BSU10430 | Transcriptional regulator of stress; Regulates transcription of a subregulon within the general stress response. Exerts positive and negative effects in response to ethanol stress. | Putative oxidoreductase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the short-chain dehydrogenases/reductases (SDR) family. | 0.555 |
ppsA | srfAA | BSU18340 | BSU03480 | Plipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Glu and Orn as part of the biosynthesis of the lipopeptide antibiotic lipastatin. The Orn residue is further epimerized to the D-isomer form. The activation sites for these amino acids consist of individual domains; Belongs to the ATP-dependent AMP-binding enzyme family. | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | 0.831 |
ppsA | srfAB | BSU18340 | BSU03490 | Plipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Glu and Orn as part of the biosynthesis of the lipopeptide antibiotic lipastatin. The Orn residue is further epimerized to the D-isomer form. The activation sites for these amino acids consist of individual domains; Belongs to the ATP-dependent AMP-binding enzyme family. | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | 0.970 |
ppsA | srfAC | BSU18340 | BSU03510 | Plipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Glu and Orn as part of the biosynthesis of the lipopeptide antibiotic lipastatin. The Orn residue is further epimerized to the D-isomer form. The activation sites for these amino acids consist of individual domains; Belongs to the ATP-dependent AMP-binding enzyme family. | Surfactin synthetase; Probably activates a leucine. | 0.980 |
srfAA | ppsA | BSU03480 | BSU18340 | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | Plipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Glu and Orn as part of the biosynthesis of the lipopeptide antibiotic lipastatin. The Orn residue is further epimerized to the D-isomer form. The activation sites for these amino acids consist of individual domains; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.831 |
srfAA | srfAB | BSU03480 | BSU03490 | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | 0.999 |
srfAA | srfAC | BSU03480 | BSU03510 | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | Surfactin synthetase; Probably activates a leucine. | 0.999 |
srfAA | trpE | BSU03480 | BSU22680 | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | Anthranilate synthase; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentrations of am [...] | 0.773 |
srfAB | ppsA | BSU03490 | BSU18340 | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | Plipastatin synthetase; This protein is a multifunctional enzyme, able to activate and polymerize the amino acids Glu and Orn as part of the biosynthesis of the lipopeptide antibiotic lipastatin. The Orn residue is further epimerized to the D-isomer form. The activation sites for these amino acids consist of individual domains; Belongs to the ATP-dependent AMP-binding enzyme family. | 0.970 |
srfAB | srfAA | BSU03490 | BSU03480 | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | 0.999 |
srfAB | srfAC | BSU03490 | BSU03510 | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | Surfactin synthetase; Probably activates a leucine. | 0.999 |
srfAB | trpE | BSU03490 | BSU22680 | Surfactin synthetase; This protein is a multifunctional enzyme able to activate and polymerize the amino acids Leu, Glu, Asp and Val. Activation sites for these AA consist of individual domains. | Anthranilate synthase; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentrations of am [...] | 0.824 |