STRINGSTRING
rplK rplK rplV rplV rpsE rpsE rplQ rplQ dnaN dnaN rpsL rpsL tufA tufA rplC rplC rplD rplD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rplKRibosomal protein L11 (BL11); Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors; Belongs to the universal ribosomal protein uL11 family. (141 aa)
rplVRibosomal protein L22 (BL17); This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (113 aa)
rpsERibosomal protein S5; With S4 and S12 plays an important role in translational accuracy; many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations); Belongs to the universal ribosomal protein uS5 family. (166 aa)
rplQRibosomal protein L17 (BL15); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type s: structure. (120 aa)
dnaNDNA polymerase III (beta subunit); Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation o [...] (378 aa)
rpsLRibosomal protein S12 (BS12); With S4 and S5 plays an important role in translational accuracy. (138 aa)
tufAElongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa)
rplCRibosomal protein L3 (BL3); One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity). Strongly stimulates 23S rRNA precursor processing by mini-ribonuclease 3 (MrnC); 20-30% DMSO can replace L3, suggesting the protein may alter rRNA conformation; Belongs to the universal ribosomal protein uL3 family. (209 aa)
rplDRibosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (207 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (34%) [HD]