node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
cheV | cheY | BSU14010 | BSU16330 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. | 0.988 |
cheV | flgE | BSU14010 | BSU16290 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Flagellar hook protein; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor; Belongs to the flagella basal body rod proteins family. | 0.872 |
cheV | lytF | BSU14010 | BSU09370 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | gamma-D-glutamate-meso-diaminopimelate muropeptidase (major autolysin); Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan. LytF is necessary and sufficient for vegetative daughter cell separation, and also seems to play a role in cell autolysis. | 0.640 |
cheV | pksM | BSU14010 | BSU17200 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Polyketide synthase; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.418 |
cheV | pksN | BSU14010 | BSU17210 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.490 |
cheV | recA | BSU14010 | BSU16940 | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | Multifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] | 0.528 |
cheY | cheV | BSU16330 | BSU14010 | Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | 0.988 |
cheY | flgE | BSU16330 | BSU16290 | Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. | Flagellar hook protein; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor; Belongs to the flagella basal body rod proteins family. | 0.960 |
cheY | lytC | BSU16330 | BSU35620 | Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | 0.517 |
cheY | lytF | BSU16330 | BSU09370 | Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. | gamma-D-glutamate-meso-diaminopimelate muropeptidase (major autolysin); Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan. LytF is necessary and sufficient for vegetative daughter cell separation, and also seems to play a role in cell autolysis. | 0.537 |
cheY | pksN | BSU16330 | BSU17210 | Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. | Polyketide synthase of type I; Involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is involved in secondary metabolism. | 0.424 |
flgE | cheV | BSU16290 | BSU14010 | Flagellar hook protein; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor; Belongs to the flagella basal body rod proteins family. | Coupling protein and response regulator for CheA activity in response to attractants (chemotaxis); Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Chemotaxis involves both a phosphorylation-dependent excitation and a methylation-dependent adaptation. CheV and CheW are involved in the coupling of the methyl- accepting chemoreceptors to the central two-component kinase CheA; they are both necessary for efficient chemotaxis. Moreover, CheA-dependent phosphorylation of CheV is required for adaptation to attractants during B.subtilis chemotaxis. | 0.872 |
flgE | cheY | BSU16290 | BSU16330 | Flagellar hook protein; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor; Belongs to the flagella basal body rod proteins family. | Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. | 0.960 |
flgE | lytF | BSU16290 | BSU09370 | Flagellar hook protein; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type f: factor; Belongs to the flagella basal body rod proteins family. | gamma-D-glutamate-meso-diaminopimelate muropeptidase (major autolysin); Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan. LytF is necessary and sufficient for vegetative daughter cell separation, and also seems to play a role in cell autolysis. | 0.582 |
lytC | cheY | BSU35620 | BSU16330 | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | Regulator of chemotaxis and motility; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. Phosphorylated CheY interacts with the flagella switch components FliM and FliY, which causes counterclockwise rotation of the flagella, resulting in smooth swimming. | 0.517 |
lytC | lytD | BSU35620 | BSU35780 | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | Exported N-acetylglucosaminidase (major autolysin) (CWBP90); Cell wall hydrolase not involved in cell autolysis, competence, sporulation or germination. It hydrolyzes the beta-1,4 glycan bond between the N-acetylglucosaminyl and the N-acetylmuramoyl residues in the glycan chain. | 0.988 |
lytC | lytE | BSU35620 | BSU09420 | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | Cell wall hydrolase; Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan (By similarity). Seems to play a role in cell separation during vegetative growth. | 0.943 |
lytC | lytF | BSU35620 | BSU09370 | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | gamma-D-glutamate-meso-diaminopimelate muropeptidase (major autolysin); Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan. LytF is necessary and sufficient for vegetative daughter cell separation, and also seems to play a role in cell autolysis. | 0.970 |
lytD | lytC | BSU35780 | BSU35620 | Exported N-acetylglucosaminidase (major autolysin) (CWBP90); Cell wall hydrolase not involved in cell autolysis, competence, sporulation or germination. It hydrolyzes the beta-1,4 glycan bond between the N-acetylglucosaminyl and the N-acetylmuramoyl residues in the glycan chain. | Putative undecaprenyl-phosphate N-acetylgalactosaminyl-1-phosphate transferase; Autolysins are cell wall hydrolases involved in some important biological processes such as cell separation, cell-wall turnover, competence for genetic transformation, formation of the flagella - in particular of its basal body - and sporulation. Has a high affinity for teichoic acid-endowed peptidoglycan. LytC is required for efficient swarming motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for proper flagellar function. | 0.988 |
lytD | lytE | BSU35780 | BSU09420 | Exported N-acetylglucosaminidase (major autolysin) (CWBP90); Cell wall hydrolase not involved in cell autolysis, competence, sporulation or germination. It hydrolyzes the beta-1,4 glycan bond between the N-acetylglucosaminyl and the N-acetylmuramoyl residues in the glycan chain. | Cell wall hydrolase; Cell wall hydrolase that cleaves gamma-D-glutamate-meso- diaminopimelate bonds in peptidoglycan (By similarity). Seems to play a role in cell separation during vegetative growth. | 0.930 |