node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ansB | panD | BSU23570 | BSU22410 | L-aspartase (aspartate ammonia lyase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-II fumarase/aspartase family. Aspartase subfamily. | Aspartate 1-decarboxylase; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine. | 0.832 |
ilvA | ilvC | BSU21770 | BSU28290 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | 0.979 |
ilvA | ilvE | BSU21770 | BSU02390 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). | Ketomethiobutyrate-branched-chain/aromatic amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Involved in the final step of the methionine regeneration pathway, where ketomethiobutyrate (KMTB) is converted to methionine via a transamination. The amino donor preference is isoleucine, leucine, valine, phenylalanine, and tyrosine; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. | 0.989 |
ilvA | panB | BSU21770 | BSU22430 | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | 0.451 |
ilvC | ilvA | BSU28290 | BSU21770 | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). | 0.979 |
ilvC | ilvE | BSU28290 | BSU02390 | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | Ketomethiobutyrate-branched-chain/aromatic amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Involved in the final step of the methionine regeneration pathway, where ketomethiobutyrate (KMTB) is converted to methionine via a transamination. The amino donor preference is isoleucine, leucine, valine, phenylalanine, and tyrosine; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. | 0.953 |
ilvC | panB | BSU28290 | BSU22430 | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | 0.763 |
ilvC | panC | BSU28290 | BSU22420 | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | Pantothenate synthetase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. | 0.407 |
ilvC | panE | BSU28290 | BSU14440 | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | Ketopantoate reductase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the ketopantoate reductase family. | 0.570 |
ilvC | panE-2 | BSU28290 | BSU15110 | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | 2-dehydropantoate 2-reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. | 0.566 |
ilvE | ilvA | BSU02390 | BSU21770 | Ketomethiobutyrate-branched-chain/aromatic amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Involved in the final step of the methionine regeneration pathway, where ketomethiobutyrate (KMTB) is converted to methionine via a transamination. The amino donor preference is isoleucine, leucine, valine, phenylalanine, and tyrosine; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). | 0.989 |
ilvE | ilvC | BSU02390 | BSU28290 | Ketomethiobutyrate-branched-chain/aromatic amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Involved in the final step of the methionine regeneration pathway, where ketomethiobutyrate (KMTB) is converted to methionine via a transamination. The amino donor preference is isoleucine, leucine, valine, phenylalanine, and tyrosine; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | 0.953 |
ilvE | panB | BSU02390 | BSU22430 | Ketomethiobutyrate-branched-chain/aromatic amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Involved in the final step of the methionine regeneration pathway, where ketomethiobutyrate (KMTB) is converted to methionine via a transamination. The amino donor preference is isoleucine, leucine, valine, phenylalanine, and tyrosine; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | 0.953 |
panB | ilvA | BSU22430 | BSU21770 | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). | 0.451 |
panB | ilvC | BSU22430 | BSU28290 | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | Acetohydroxy-acid isomeroreductase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | 0.763 |
panB | ilvE | BSU22430 | BSU02390 | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | Ketomethiobutyrate-branched-chain/aromatic amino acid aminotransferase; Transaminates branched-chain amino acids and ketoglutarate. Involved in the final step of the methionine regeneration pathway, where ketomethiobutyrate (KMTB) is converted to methionine via a transamination. The amino donor preference is isoleucine, leucine, valine, phenylalanine, and tyrosine; Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. | 0.953 |
panB | panC | BSU22430 | BSU22420 | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | Pantothenate synthetase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. | 0.999 |
panB | panD | BSU22430 | BSU22410 | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | Aspartate 1-decarboxylase; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine. | 0.999 |
panB | panE | BSU22430 | BSU14440 | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | Ketopantoate reductase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the ketopantoate reductase family. | 0.991 |
panB | panE-2 | BSU22430 | BSU15110 | Ketopantoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. | 2-dehydropantoate 2-reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. | 0.991 |