node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
acoL | lpdV | BSU08090 | BSU24060 | Acetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. | Branched-chain alpha-keto acid dehydrogenase E3 subunit (dihydrolipoamide dehydrogenase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of 3 enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3); Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. | 0.910 |
acoL | pdhD | BSU08090 | BSU14610 | Acetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. | Dihydrolipoyl dehydrogenase; Catalyzes the oxidation of dihydrolipoamide to lipoamide; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. | 0.912 |
acoL | pgi | BSU08090 | BSU31350 | Acetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. | Glucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family. | 0.427 |
bglC | pgi | BSU03410 | BSU31350 | Aryl-phospho-beta-d-glucosidase; Is able to catalyze the hydrolysis of aryl-phospho-beta-D- glucosides such as 4-methylumbelliferyl-phospho-beta-D-glucopyranoside (MUG-P), phosphoarbutin and phosphosalicin. Is not essential for growth on arbutin and salicin as the sole carbon source. Belongs to the glycosyl hydrolase 1 family. | Glucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family. | 0.910 |
bglH | pgi | BSU39260 | BSU31350 | Aryl-phospho-beta-d-glucosidase; Catalyzes the hydrolysis of aryl-phospho-beta-D-glucosides such as 4-methylumbelliferyl-phospho-beta-D-glucopyranoside (MUG-P), phosphoarbutin and phosphosalicin. Plays a major role in the utilization of arbutin or salicin as the sole carbon source. BglA and BglH are the major proteins contributing to hydrolysis of MUG-P by extracts of late-exponential-phase or stationary-phase B.subtilis cells; Belongs to the glycosyl hydrolase 1 family. | Glucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family. | 0.910 |
copA | dnaJ | BSU33500 | BSU25460 | Copper transporter ATPase; Involved in copper export. | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | 0.450 |
dnaJ | copA | BSU25460 | BSU33500 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | Copper transporter ATPase; Involved in copper export. | 0.450 |
dnaJ | gyrA | BSU25460 | BSU00070 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | DNA gyrase (subunit A); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.559 |
dnaJ | gyrB | BSU25460 | BSU00060 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | DNA gyrase (subunit B); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.636 |
dnaJ | iscSA | BSU25460 | BSU27510 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | Cysteine desulfurase involved in tRNA thiolation; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. | 0.632 |
dnaJ | iscSB | BSU25460 | BSU29590 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | Cysteine desulfurase; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. | 0.592 |
dnaJ | mtaB | BSU25460 | BSU25430 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | tRNA N(6)-threonylcarbamoyladenosine (t(6)A) methylthiotransferase; Catalyzes the methylthiolation of N6- threonylcarbamoyladenosine (t(6)A), leading to the formation of 2- methylthio-N6-threonylcarbamoyladenosine (ms(2)t(6)A) at position 37 in tRNAs that read codons beginning with adenine. Belongs to the methylthiotransferase family. MtaB subfamily. | 0.875 |
dnaJ | nifS | BSU25460 | BSU27880 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | Putative desulfurase involved in iron-sulfur clusters for NAD biosynthesis; Catalyzes the removal of elemental sulfur from cysteine to produce alanine (By similarity). Seems to be required for NAD biosynthesis. | 0.538 |
dnaJ | ppiB | BSU25460 | BSU23360 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | Peptidyl-prolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | 0.821 |
dnaJ | recA | BSU25460 | BSU16940 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | Multifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] | 0.587 |
dnaJ | sigA | BSU25460 | BSU25200 | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | RNA polymerase major sigma-43 factor (sigma-A); Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth; Belongs to the sigma-70 factor family. RpoD/SigA subfamily. | 0.632 |
galK | pgi | BSU38200 | BSU31350 | Galactokinase; Catalyzes the transfer of the gamma-phosphate of ATP to D- galactose to form alpha-D-galactose-1-phosphate (Gal-1-P). Belongs to the GHMP kinase family. GalK subfamily. | Glucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family. | 0.551 |
gyrA | dnaJ | BSU00070 | BSU25460 | DNA gyrase (subunit A); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Co-factor of molecular chaperone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions betwe [...] | 0.559 |
gyrA | gyrB | BSU00070 | BSU00060 | DNA gyrase (subunit A); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | DNA gyrase (subunit B); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.999 |
gyrA | murAA | BSU00070 | BSU36760 | DNA gyrase (subunit A); A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine. Essential for cell growth; Belongs to the EPSP synthase family. MurA subfamily. | 0.480 |