STRINGSTRING
cdsA cdsA nrdE nrdE nrdF nrdF thyA thyA plsY plsY yosP yosP thyB thyB pfkA pfkA ackA ackA pgi pgi eno eno adk adk psd psd ldh ldh spo0E spo0E pdhA pdhA pdhD pdhD ftsH ftsH secY secY pyrG pyrG fbaA fbaA tdk tdk glyA glyA gapA gapA secA secA pgk pgk tpiA tpiA spoVM spoVM plsX plsX pgm pgm ftsY ftsY ffh ffh pyrH pyrH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
cdsAPhosphatidate cytidylyltransferase (CDP-diglyceride synthase); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; enzyme. (269 aa)
nrdERibonucleoside-diphosphate reductase (major subunit); Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (By similarity). (700 aa)
nrdFRibonucleoside-diphosphate reductase (minor subunit); Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (By similarity). (329 aa)
thyAHypothetical protein; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (279 aa)
plsYAcylphosphate:glycerol-3-phosphate acyltransferase; Catalyzes the transfer of an acyl group from acyl-phosphate (acyl-PO(4)) to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme utilizes acyl-phosphate as fatty acyl donor, but not acyl-CoA or acyl-ACP; Belongs to the PlsY family. (193 aa)
yosPRibonucleoside-diphosphate reductase 2, beta subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (By similarity); Belongs to the ribonucleoside diphosphate reductase small chain family. (329 aa)
thyBThymidylate synthase B; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (264 aa)
pfkA6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (319 aa)
ackAAcetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Appears to favor the formation of acetate. Involved in the secretion of excess carbohydrate. (395 aa)
pgiGlucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family. (450 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (430 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (217 aa)
psdPhosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer); Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Prokaryotic type I sub-subfamily. (263 aa)
ldhL-lactate dehydrogenase; Catalyzes the conversion of lactate to pyruvate. (321 aa)
spo0ENegative regulatory phosphatase acting on Spo0A-P (sporulation); Aspartyl-phosphate phosphatase which specifically dephosphorylates the sporulation transcription factor Spo0A-P and negatively regulates the sporulation initiation pathway in order to control the proper timing of sporulation. Belongs to the spo0E family. (85 aa)
pdhAPyruvate dehydrogenase (E1 alpha subunit); The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (371 aa)
pdhDDihydrolipoyl dehydrogenase; Catalyzes the oxidation of dihydrolipoamide to lipoamide; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (470 aa)
ftsHCell-division protein and general stress protein (class III heat-shock); Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; In the central section; belongs to the AAA ATPase family. (637 aa)
secYPreprotein translocase subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (431 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (535 aa)
fbaAFructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (285 aa)
tdkThymidine kinase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (195 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity); Belongs to the SHMT family. (415 aa)
gapAGlyceraldehyde-3-phosphate dehydrogenase; Involved in the glycolysis. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3- bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (335 aa)
secATranslocase binding subunit (ATPase); Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (841 aa)
pgkPhosphoglycerate kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the phosphoglycerate kinase family. (394 aa)
tpiATriose phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (253 aa)
spoVMFactor required for normal spore cortex and coat synthesis (stage V sporulation); Coordinates cortex and coat assembly during sporulation. Associates with the spore coat protein SpoIVA and with the outer forespore membrane, thereby serving as a membrane anchor that tethers SpoIVA and the entire spore coat to the forespore surface. May also serve as a competitive inhibitor of FtsH activity during sporulation. (26 aa)
plsXphosphate:acyl-ACP acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (333 aa)
pgmPhosphoglycerate mutase; Essential for rapid growth and for sporulation. Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate. (511 aa)
ftsYSignal recognition particle (docking protein); Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (329 aa)
ffhSignal recognition particle-like (SRP) GTPase; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individua [...] (446 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP, with ATP or dATP as the most efficient phosphate donors. Is also able to phosphorylate 5-fluoro-UMP and 6-aza-UMP. (240 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (12%) [HD]