Your Input: | |||||
pssA | Phosphatidylserine synthase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (177 aa) | ||||
yclM | Aspartate kinase III; Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. (454 aa) | ||||
acoL | Acetoin dehydrogenase E3 component (dihydrolipoamide dehydrogenase); Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (458 aa) | ||||
serC | Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (359 aa) | ||||
pdhD | Dihydrolipoyl dehydrogenase; Catalyzes the oxidation of dihydrolipoamide to lipoamide; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (470 aa) | ||||
sdaAB | L-serine dehydratase (beta chain); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; enzyme; Belongs to the iron-sulfur dependent L-serine dehydratase family. (220 aa) | ||||
sdaAA | L-serine dehydratase (alpha chain); Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the iron-sulfur dependent L-serine dehydratase family. (300 aa) | ||||
asd | Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (346 aa) | ||||
dapG | Aspartokinase I (alpha and beta subunits); Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. Belongs to the aspartokinase family. (404 aa) | ||||
tdh | Threonine 3-dehydrogenase; Catalyzes the NAD(+)-dependent oxidation of L-threonine to 2- amino-3-ketobutyrate; Belongs to the zinc-containing alcohol dehydrogenase family. (347 aa) | ||||
kbl | 2-amino-3-ketobutyrate CoA ligase (glycine acetyl transferase); Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. (392 aa) | ||||
yoaD | Putative 2-hydroxyacid dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (344 aa) | ||||
ilvA | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). (422 aa) | ||||
trpA | Tryptophan synthase (alpha subunit); The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate; Belongs to the TrpA family. (267 aa) | ||||
trpB | Tryptophan synthase (beta subunit); The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (400 aa) | ||||
serA | 3-phosphoglycerate dehydrogenase; Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L- serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate. (525 aa) | ||||
dsdA | D-serine ammonia-lyase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the serine/threonine dehydratase family. DsdA subfamily. (448 aa) | ||||
lpdV | Branched-chain alpha-keto acid dehydrogenase E3 subunit (dihydrolipoamide dehydrogenase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of 3 enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3); Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (474 aa) | ||||
gcvPB | Glycine decarboxylase (subunit 2) (glycine cleavage system protein P); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (By similarity); Belongs to the GcvP family. C-terminal subunit subfamily. (488 aa) | ||||
gcvPA | Glycine decarboxylase (subunit 1) (glycine cleavage system protein P); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (By similarity). (448 aa) | ||||
gcvT | Aminomethyltransferase (glycine cleavage system protein T); The glycine cleavage system catalyzes the degradation of glycine. (362 aa) | ||||
mccB | Cystathionine gamma-lyase and homocysteine gamma-lyase for reverse transsulfuration pathway; Catalyzes the conversion of cystathionine to cysteine, and homocysteine to sulfide. (379 aa) | ||||
lysC | Aspartokinase II alpha subunit (aa 1->408) and beta subunit (aa 246->408); Catalyzes the phosphorylation of the beta-carboxyl group of aspartic acid with ATP to yield 4-phospho-L-aspartate, which is involved in the branched biosynthetic pathway leading to the biosynthesis of amino acids threonine, isoleucine and methionine. (408 aa) | ||||
gbsB | Choline dehydrogenase; Involved in the biosynthesis of the osmoprotectant glycine betaine from choline; Belongs to the iron-containing alcohol dehydrogenase family. (402 aa) | ||||
gbsA | Glycine betaine aldehyde dehydrogenase, NAD+-dependent; Involved in the biosynthesis of the osmoprotectant glycine betaine from choline. Catalyzes the oxidation of betaine aldehyde to betaine. Shows specificity for betaine aldehyde as substrate. Can use both NAD(+) and NADP(+), but NAD(+) is strongly preferred. (490 aa) | ||||
thrB | Homoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (309 aa) | ||||
thrC | Threonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. (352 aa) | ||||
hom | Homoserine dehydrogenase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (433 aa) | ||||
gcvH | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (127 aa) | ||||
pgm | Phosphoglycerate mutase; Essential for rapid growth and for sporulation. Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate. (511 aa) | ||||
yvcT | Putative 2-hydroxyacid dehydrogenase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (325 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (By similarity); Belongs to the SHMT family. (415 aa) | ||||
glxK | Glycerate kinase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme. (382 aa) |