STRINGSTRING
ybbF ybbF ycdG ycdG amyE amyE bglC bglC gmuB gmuB gmuA gmuA gmuC gmuC gmuD gmuD gmuE gmuE ydjE ydjE yfnH yfnH treP treP treA treA malA malA malP malP pgcA pgcA eglS eglS yngB yngB ypqE ypqE glcK glcK amyX amyX ytdA ytdA glgP glgP glgA glgA glgD glgD glgC glgC glgB glgB yugT yugT pgi pgi sacB sacB levB levB mdxM mdxM mdxL mdxL mdxK mdxK mdxD mdxD gtaB gtaB sacA sacA sacP sacP ywbA ywbA sacX sacX licH licH licA licA licC licC licB licB bglH bglH bglA bglA yyzE yyzE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ybbFPutative PTS system EIIBC component ybbF; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. (455 aa)
ycdGPutative oligo-carbohydrate hydrolase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (561 aa)
amyEAlpha-amylase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the glycosyl hydrolase 13 family. (659 aa)
bglCAryl-phospho-beta-d-glucosidase; Is able to catalyze the hydrolysis of aryl-phospho-beta-D- glucosides such as 4-methylumbelliferyl-phospho-beta-D-glucopyranoside (MUG-P), phosphoarbutin and phosphosalicin. Is not essential for growth on arbutin and salicin as the sole carbon source. Belongs to the glycosyl hydrolase 1 family. (477 aa)
gmuBOligo-alpha-mannoside phosphotransferase system enzyme IIB; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II GmuABC PTS system is involved in the transport of oligo- glucomannans such as cellobiose or mannobiose. (103 aa)
gmuAOligo-alpha-mannoside phosphotransferase system enzyme IIA; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II GmuABC PTS system is involved in the transport of oligo- glucomannans such as cellobiose or mannobiose. (110 aa)
gmuCOligo-alpha-mannoside phosphotransferase system enzyme IIC; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II GmuABC PTS system is involved in the transport of oligo- glucomannans such as cellobiose or mannobiose. (442 aa)
gmuDMannoside-phospho-beta-d-glucosidase; Phospho-beta-D-glucosidase that seems to be involved in the degradation of glucomannan. Is also capable of hydrolyzing aryl- phospho-beta-D-glucosides, although very weakly, and plays only a minor role, if any, in the degradation of these substrates in vivo. Belongs to the glycosyl hydrolase 1 family. (465 aa)
gmuEROK fructokinase; Seems to be involved in the degradation of glucomannan. (299 aa)
ydjEPutative sugar kinase (ribokinase family); Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme; Belongs to the carbohydrate kinase PfkB family. (320 aa)
yfnHPutative glucose-1-phosphate cytidylyltransferase; Catalyzes the transfer of a CMP moiety from CTP to glucose 1- phosphate. (254 aa)
trePPhosphotransferase system (PTS) trehalose-specific enzyme IIBC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in trehalose transport. (470 aa)
treATrehalose-6-phosphate hydrolase; Hydrolyzes trehalose-6-phosphate to glucose and glucose 6- phosphate. Can also very effectively hydrolyzes p-nitrophenyl-alpha-D- glucopyranoside, but not lactose, maltose, sucrose or sucrose-6- phosphate. Trehalose is also hydrolyzed, but to a much smaller extent than trehalose-6-phosphate; Belongs to the glycosyl hydrolase 13 family. (561 aa)
malA6-phospho-alpha-glucosidase; Hydrolyzes maltose-6'-phosphate and trehalose-6'-phosphate. Is involved in the catabolism of alpha-glycosides accumulated via a phosphoenolpyruvate-dependent maltose phosphotransferase system (PEP- PTS). Is also able to significantly catalyze the hydrolysis of both 6- phospho-alpha- and 6-phospho-beta-glucosides containing activated leaving groups such as p-nitrophenol and does so with retention and inversion, respectively, of the substrate anomeric configuration. (449 aa)
malPPhosphotransferase system (PTS) maltose-specific enzyme IICB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in maltose transport. (527 aa)
pgcAAlpha-phosphoglucomutase; Catalyzes the interconversion between glucose-6-phosphate and alpha-glucose-1-phosphate. This is the first step in the biosynthesis of diglucosyl-diacylglycerol (Glc2-DAG), i.e. the predominant glycolipid found in B.subtilis membrane, which is also used as a membrane anchor for lipoteichoic acid (LTA). Has a role in the biosynthesis of all phosphate-containing envelope polymers, since glucose-1-phosphate is the precursor of UDP-glucose, which serves as a glucosyl donor not only for the biosynthesis of LTA but also for wall teichoic acids (WTAs). Is required fo [...] (581 aa)
eglSEndo-1,4-beta-glucanase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (499 aa)
yngBPutative UTP-glucose-1-phosphate uridylyltransferase; Catalyzes the formation of UDP-glucose from glucose-1- phosphate and UTP. This is an intermediate step in the biosynthesis of diglucosyl-diacylglycerol (Glc2-DAG) (By similarity). (297 aa)
ypqEPutative phosphotransferase system enzyme IIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. (168 aa)
glcKGlucose kinase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the ROK (NagC/XylR) family. (321 aa)
amyXPullulanase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme; Belongs to the glycosyl hydrolase 13 family. (718 aa)
ytdAPutative UTP-glucose-1-phosphate uridylyltransferase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; Product type pe: putative enzyme. (272 aa)
glgPGlycogen phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. (798 aa)
glgABacterial glycogen (starch) synthase; Synthesizes alpha-1,4-glucan chains using ADP-glucose; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (484 aa)
glgDGlucose-1-phosphate adenylyltransferase (ADP-glucose pyrophosphorylase) beta subunit; Required for the synthesis of glycogen; Belongs to the bacterial/plant glucose-1-phosphate adenylyltransferase family. (343 aa)
glgCGlucose-1-phosphate adenylyltransferase (ADP-glucose pyrophosphorylase) subunit alpha; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc. (380 aa)
glgB1,4-alpha-glucan branching enzyme; Catalyzes the formation of the alpha-1,6-glucosidic linkages in glycogen by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position. (627 aa)
yugTPutative oligo-1,6-glucosidase; Evidence 3: Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme; Belongs to the glycosyl hydrolase 13 family. (554 aa)
pgiGlucose-6-phosphate isomerase; Evidence 2a: Function of homologous gene experimentally demonstrated in an other organism; Product type e: enzyme; Belongs to the GPI family. (450 aa)
sacBLevansucrase; Evidence 1a: Function experimentally demonstrated in the studied strain; Product type e: enzyme. (473 aa)
levBEndolevanase; Catalyzes the degradation of levan mainly into levanbiose (difructose). Is not active on sucrose; Belongs to the glycosyl hydrolase 32 family. (516 aa)
mdxMBeta-phosphoglucomutase; Catalyzes the interconversion of D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), and forming beta-D-glucose 1,6- (bis)phosphate (beta-G16P) as an intermediate. The beta- phosphoglucomutase (Beta-PGM) acts on the beta-C(1) anomer of G1P. It plays a key role in the regulation of the flow of carbohydrate intermediates in glycolysis and the formation of the sugar nucleotide UDP-glucose (By similarity). (226 aa)
mdxLOligo-1,4-1,6-alpha-glucosidase (sucrase-maltase-isomaltase); Hydrolyzes various disaccharides such as sucrose, maltose, and isomaltose with different efficiencies. Also hydrolyzes longer maltodextrins from maltotriose up to maltohexaose, but not maltoheptaose, palatinose, isomaltotriose, or isomaltotetraose. Belongs to the glycosyl hydrolase 13 family. (561 aa)
mdxKMaltose phosphorylase; Catalyzes the phosphorolysis of maltose, leading to the formation of glucose and glucose 1-P. (757 aa)
mdxDMaltogenic alpha-amylase; Hydrolyzes beta-cyclodextrin to maltose and glucose, soluble starch to maltose and glucose, and pullulan to panose with trace amounts of maltose and glucose. It is also able to hydrolyze acarbose. Can also exhibit a transglycosylation activity transferring glucose or maltose to another moiety of sugars by forming alpha-(1,6)- and alpha- (1,3)-glycosidic linkages upon the hydrolysis of substrate at concentrations of 5% or higher (By similarity); Belongs to the glycosyl hydrolase 13 family. BbmA subfamily. (589 aa)
gtaBUTP-glucose-1-phosphate uridylyltransferase; Catalyzes the formation of UDP-glucose from glucose-1- phosphate and UTP. This is an intermediate step in the biosynthesis of diglucosyl-diacylglycerol (Glc2-DAG), i.e. the predominant glycolipid found in B.subtilis membrane, which is also used as a membrane anchor for lipoteichoic acid (LTA). Has a role in the biosynthesis of all phosphate-containing envelope polymers, since UDP-glucose serves as a glucosyl donor not only for the biosynthesis of LTA but also for wall teichoic acids (WTAs). Is required for biofilm formation. This is likely d [...] (292 aa)
sacASucrase-6-phosphate hydrolase; Evidence 2b: Function of strongly homologous gene; Product type e: enzyme; Belongs to the glycosyl hydrolase 32 family. (479 aa)
sacPPhosphotransferase system (PTS) sucrose-specific enzyme IIBC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in sucrose transport. (461 aa)
ywbAPutative phosphotransferase system enzyme IIC permease component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. (444 aa)
sacXNegative regulator of SacY; Negatively regulates SacY activity by catalyzing its phosphorylation on 'His-99'. Negatively regulates SacY. (459 aa)
licH6-phospho-beta-glucosidase; Hydrolyzes phospho-beta-glucosides. (442 aa)
licAPhosphotransferase system (PTS) lichenan-specific enzyme IIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in lichenan transport. (110 aa)
licCPhosphotransferase system (PTS) lichenan-specific enzyme IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in lichenan transport. (452 aa)
licBPhosphotransferase system (PTS) lichenan-specific enzyme IIB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in lichenan transport. (102 aa)
bglHAryl-phospho-beta-d-glucosidase; Catalyzes the hydrolysis of aryl-phospho-beta-D-glucosides such as 4-methylumbelliferyl-phospho-beta-D-glucopyranoside (MUG-P), phosphoarbutin and phosphosalicin. Plays a major role in the utilization of arbutin or salicin as the sole carbon source. BglA and BglH are the major proteins contributing to hydrolysis of MUG-P by extracts of late-exponential-phase or stationary-phase B.subtilis cells; Belongs to the glycosyl hydrolase 1 family. (469 aa)
bglAAryl-6-phospho-beta-glucosidase; Catalyzes the hydrolysis of aryl-phospho-beta-D-glucosides such as 4-methylumbelliferyl-phospho-beta-D-glucopyranoside (MUG-P), phosphoarbutin and phosphosalicin. Plays a major role in the utilization of arbutin or salicin as the sole carbon source. BglA and BglH are the major proteins contributing to hydrolysis of MUG-P by extracts of late-exponential-phase or stationary-phase B.subtilis cells; Belongs to the glycosyl hydrolase 1 family. (479 aa)
yyzEPutative phosphotransferase system enzyme IIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. (76 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (18%) [HD]