STRINGSTRING
nfrAB nfrAB ycsE ycsE yitU yitU ribC ribC ribH ribH ribAB ribAB ribE ribE ribD ribD rbfK rbfK ywtE ywtE nfrAA nfrAA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nfrABNADPH-FMN oxidoreductase (nitroreductase); Reduces FMNH(2) to FMN, with NADH or NADPH as reductant. It also reduces nitroaromatic compounds, quinones, chromates and azo dyes. It could supply the reduced form of FMN to luciferase-like protein and contribute to the degradation of aromatic compounds. Belongs to the flavin oxidoreductase frp family. (249 aa)
ycsEPutative phosphatase; Catalyzes the dephosphorylation of the riboflavin precursor 5-amino-6-(5-phospho-D-ribitylamino)uracil and of flavin mononucleotide (FMN) in vitro. To a lesser extent, may also catalyze the dephosphorylation of a broad range of substrates such as phosphorylated sugars and triphosphate nucleotides in vitro. (249 aa)
yitUPutative phosphatase; Catalyzes the dephosphorylation of the riboflavin precursor 5-amino-6-(5-phospho-D-ribitylamino)uracil and of flavin mononucleotide (FMN) in vitro. (270 aa)
ribCBifunctional riboflavin kinase FAD synthase; Catalyzes the phosphorylation of riboflavin to FMN followed by the adenylation of FMN to FAD. (316 aa)
ribH6,7-dimethyl-8-ribityllumazine synthase, beta subunit; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin. Is able to use the non-natural R enantiomer of 3,4- dihydroxy-2-butanone 4-phosphate as a substrate, but with less efficiency than the natural S enantiomer. Cannot use unphosphorylated 3,4-dihydroxy-2-butanone, 3,4-dihydroxy-2-butanone 3-phosphate or diacetyl as substrates. (154 aa)
ribABFused GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; In the N-terminal section; belongs to the DHBP synthase family. (398 aa)
ribERiboflavin synthase (alpha subunit); Catalyzes the dismutation of two molecules of 6,7-dimethyl-8- ribityllumazine, resulting in the formation of riboflavin and 5-amino- 6-(D-ribitylamino)uracil. (215 aa)
ribDFused diaminohydroxyphosphoribosylaminopyrimidine deaminase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (361 aa)
rbfKRNA-binding cryptic riboflavin kinase regulatory protein; May be directly involved in the regulation of the rib genes. C-terminal part of RibR specifically binds to RFN of the rib leader of the riboflavin biosynthetic operon. The RFN element is a sequence within the rib-leader mRNA reported to serve as a receptor for an FMN- dependent riboswitch. Possibly, RibR produces the comodulator FMN through its own N-terminal flavokinase activity. FMN-activated RibR may stabilize the anti-anti terminator structure of RFN mRNA, causing transcription termination of the rib genes in trans. (230 aa)
ywtEPutative hydrolase; Catalyzes the dephosphorylation of the riboflavin precursor 5-amino-6-(5-phospho-D-ribitylamino)uracil and of flavin mononucleotide (FMN) in vitro. Also catalyzes the dephosphorylation of phosphorylated 5-6 carbon sugars and monophosphate nucleotides (NMP) in vitro. (286 aa)
nfrAAFMN-containing NADPH-linked nitro/flavin reductase; Reduces FMNH(2) to FMN, with NADPH as reductant. It also reduces nitroaromatic compounds, quinones and azo dyes. (249 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (8%) [HD]