node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
bsdB | bsdC | BSU03630 | BSU03640 | Phenolic acid decarboxylase subunit BsdB; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Flavin prenyltransferase that catalyzes the synthesis of the prenylated FMN cofactor (prenyl-FMN) for phenolic acid decarboxylase (By similarity); Belongs to the UbiX/PAD1 family. YclB subfamily. | Phenolic acid decarboxylase subunit BsdC; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Phenolic acid decarboxylase that catalyzes the reversible decarboxylation of 4- hydroxybenzoate and vanillate. Could also catalyze the decarboxylation of salicylate (Probable). Is not active on di- and tri-hydroxybenzoate derivatives. Belongs to the UbiD family. YclC subfamily. | 0.999 |
bsdB | bsdD | BSU03630 | BSU03651 | Phenolic acid decarboxylase subunit BsdB; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Flavin prenyltransferase that catalyzes the synthesis of the prenylated FMN cofactor (prenyl-FMN) for phenolic acid decarboxylase (By similarity); Belongs to the UbiX/PAD1 family. YclB subfamily. | Phenolic acid decarboxylase subunit BsdD; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions, however the precise biochemical function of BsdD in metabolism of phenolic acid is unknown. | 0.978 |
bsdC | bsdB | BSU03640 | BSU03630 | Phenolic acid decarboxylase subunit BsdC; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Phenolic acid decarboxylase that catalyzes the reversible decarboxylation of 4- hydroxybenzoate and vanillate. Could also catalyze the decarboxylation of salicylate (Probable). Is not active on di- and tri-hydroxybenzoate derivatives. Belongs to the UbiD family. YclC subfamily. | Phenolic acid decarboxylase subunit BsdB; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Flavin prenyltransferase that catalyzes the synthesis of the prenylated FMN cofactor (prenyl-FMN) for phenolic acid decarboxylase (By similarity); Belongs to the UbiX/PAD1 family. YclB subfamily. | 0.999 |
bsdC | bsdD | BSU03640 | BSU03651 | Phenolic acid decarboxylase subunit BsdC; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Phenolic acid decarboxylase that catalyzes the reversible decarboxylation of 4- hydroxybenzoate and vanillate. Could also catalyze the decarboxylation of salicylate (Probable). Is not active on di- and tri-hydroxybenzoate derivatives. Belongs to the UbiD family. YclC subfamily. | Phenolic acid decarboxylase subunit BsdD; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions, however the precise biochemical function of BsdD in metabolism of phenolic acid is unknown. | 0.977 |
bsdC | yoaI | BSU03640 | BSU18620 | Phenolic acid decarboxylase subunit BsdC; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Phenolic acid decarboxylase that catalyzes the reversible decarboxylation of 4- hydroxybenzoate and vanillate. Could also catalyze the decarboxylation of salicylate (Probable). Is not active on di- and tri-hydroxybenzoate derivatives. Belongs to the UbiD family. YclC subfamily. | Putative 4-hydroxyphenylacetate-3-hydroxylase; Catalyzes the hydroxylation of 4-hydroxyphenylacetic acid (4HPA), leading to the production of 3,4-dihydroxyphenylacetic acid (DHPA). | 0.686 |
bsdC | ywhB | BSU03640 | BSU37540 | Phenolic acid decarboxylase subunit BsdC; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Phenolic acid decarboxylase that catalyzes the reversible decarboxylation of 4- hydroxybenzoate and vanillate. Could also catalyze the decarboxylation of salicylate (Probable). Is not active on di- and tri-hydroxybenzoate derivatives. Belongs to the UbiD family. YclC subfamily. | 1,3-keto-enol tautomerase; Catalyzes both 1,3- and 1,5-keto-enol tautomerization of the diacid 2-hydroxymuconate (2-hydroxy-2,4-hexadienedioate) to produce 2- oxo-4-hexenedioate. This reaction is highly stereoselective and produces a mixture of stereoisomers, where the (3S)-isomer of 2-oxo-4- hexenedioate predominates. Also catalyzes the tautomerization of 2- hydroxymuconate to 2-oxo-3-hexenedioate, however this reaction is slower and occurs after the tautomerization of 2-hydroxymuconate to 2- oxo-4-hexenedioate. Using 2-hydroxy-2,4-pentadienoate, phenylenolpyruvate, (p-hydroxyphenyl)- [...] | 0.565 |
bsdD | bsdB | BSU03651 | BSU03630 | Phenolic acid decarboxylase subunit BsdD; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions, however the precise biochemical function of BsdD in metabolism of phenolic acid is unknown. | Phenolic acid decarboxylase subunit BsdB; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Flavin prenyltransferase that catalyzes the synthesis of the prenylated FMN cofactor (prenyl-FMN) for phenolic acid decarboxylase (By similarity); Belongs to the UbiX/PAD1 family. YclB subfamily. | 0.978 |
bsdD | bsdC | BSU03651 | BSU03640 | Phenolic acid decarboxylase subunit BsdD; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions, however the precise biochemical function of BsdD in metabolism of phenolic acid is unknown. | Phenolic acid decarboxylase subunit BsdC; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Phenolic acid decarboxylase that catalyzes the reversible decarboxylation of 4- hydroxybenzoate and vanillate. Could also catalyze the decarboxylation of salicylate (Probable). Is not active on di- and tri-hydroxybenzoate derivatives. Belongs to the UbiD family. YclC subfamily. | 0.977 |
catE | ywhB | BSU08240 | BSU37540 | Catechol-2,3-dioxygenase subunit; Involved in the meta cleavage of catechol to 2-hydroxymuconic semialdehyde. Essential for growth and viability in the presence of catechol and probably involved in the detoxification of catechol. | 1,3-keto-enol tautomerase; Catalyzes both 1,3- and 1,5-keto-enol tautomerization of the diacid 2-hydroxymuconate (2-hydroxy-2,4-hexadienedioate) to produce 2- oxo-4-hexenedioate. This reaction is highly stereoselective and produces a mixture of stereoisomers, where the (3S)-isomer of 2-oxo-4- hexenedioate predominates. Also catalyzes the tautomerization of 2- hydroxymuconate to 2-oxo-3-hexenedioate, however this reaction is slower and occurs after the tautomerization of 2-hydroxymuconate to 2- oxo-4-hexenedioate. Using 2-hydroxy-2,4-pentadienoate, phenylenolpyruvate, (p-hydroxyphenyl)- [...] | 0.919 |
yoaI | bsdC | BSU18620 | BSU03640 | Putative 4-hydroxyphenylacetate-3-hydroxylase; Catalyzes the hydroxylation of 4-hydroxyphenylacetic acid (4HPA), leading to the production of 3,4-dihydroxyphenylacetic acid (DHPA). | Phenolic acid decarboxylase subunit BsdC; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Phenolic acid decarboxylase that catalyzes the reversible decarboxylation of 4- hydroxybenzoate and vanillate. Could also catalyze the decarboxylation of salicylate (Probable). Is not active on di- and tri-hydroxybenzoate derivatives. Belongs to the UbiD family. YclC subfamily. | 0.686 |
ywhB | bsdC | BSU37540 | BSU03640 | 1,3-keto-enol tautomerase; Catalyzes both 1,3- and 1,5-keto-enol tautomerization of the diacid 2-hydroxymuconate (2-hydroxy-2,4-hexadienedioate) to produce 2- oxo-4-hexenedioate. This reaction is highly stereoselective and produces a mixture of stereoisomers, where the (3S)-isomer of 2-oxo-4- hexenedioate predominates. Also catalyzes the tautomerization of 2- hydroxymuconate to 2-oxo-3-hexenedioate, however this reaction is slower and occurs after the tautomerization of 2-hydroxymuconate to 2- oxo-4-hexenedioate. Using 2-hydroxy-2,4-pentadienoate, phenylenolpyruvate, (p-hydroxyphenyl)- [...] | Phenolic acid decarboxylase subunit BsdC; Involved in the non-oxidative decarboxylation and detoxification of phenolic derivatives under both aerobic and anaerobic conditions. Phenolic acid decarboxylase that catalyzes the reversible decarboxylation of 4- hydroxybenzoate and vanillate. Could also catalyze the decarboxylation of salicylate (Probable). Is not active on di- and tri-hydroxybenzoate derivatives. Belongs to the UbiD family. YclC subfamily. | 0.565 |
ywhB | catE | BSU37540 | BSU08240 | 1,3-keto-enol tautomerase; Catalyzes both 1,3- and 1,5-keto-enol tautomerization of the diacid 2-hydroxymuconate (2-hydroxy-2,4-hexadienedioate) to produce 2- oxo-4-hexenedioate. This reaction is highly stereoselective and produces a mixture of stereoisomers, where the (3S)-isomer of 2-oxo-4- hexenedioate predominates. Also catalyzes the tautomerization of 2- hydroxymuconate to 2-oxo-3-hexenedioate, however this reaction is slower and occurs after the tautomerization of 2-hydroxymuconate to 2- oxo-4-hexenedioate. Using 2-hydroxy-2,4-pentadienoate, phenylenolpyruvate, (p-hydroxyphenyl)- [...] | Catechol-2,3-dioxygenase subunit; Involved in the meta cleavage of catechol to 2-hydroxymuconic semialdehyde. Essential for growth and viability in the presence of catechol and probably involved in the detoxification of catechol. | 0.919 |