STRINGSTRING
dnaN dnaN recF recF dnaX dnaX recR recR holB holB priA priA recG recG polC polC recA recA yorL yorL yorK yorK recO recO holA holA recD recD recJ recJ ruvB ruvB ruvA ruvA polA polA dnaE dnaE ssbA ssbA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
dnaNDNA polymerase III (beta subunit); Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation o [...] (378 aa)
recFDNA repair and genetic recombination factor; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP. Is recruited to repair centers, foci that are the site of double- strand DNA break(s) after RecN and RecO; recruitment may depend on RecO. (370 aa)
dnaXDNA polymerase III (gamma and tau subunits); DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. (563 aa)
recRDNA repair and recombination protein; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (198 aa)
holBDNA polymerase III delta' subunit; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. (329 aa)
priAPrimosomal replication factor Y (primosomal protein N'); Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (805 aa)
recGBranch migrating ATP-dependent DNA helicase involved in DNA recombination and repair; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA) (By similarity); Belongs to the helicase family. RecG subfamily. (682 aa)
polCDNA polymerase III (alpha subunit); Required for replicative DNA synthesis. This DNA polymerase also exhibits 3' to 5' exonuclease activity; Belongs to the DNA polymerase type-C family. PolC subfamily. (1437 aa)
recAMultifunctional SOS repair factor; Multifunctional protein involved in homologous recombination, DNA repair and competence. Can catalyze the hydrolysis of (d)ATP in the presence of single-stranded DNA; prefers dATP at least in vitro, catalyzes the dATP-dependent uptake of single- stranded DNA by duplex DNA, and the dATP-dependent hybridization of homologous single-stranded DNAs (strand exchange). RecA-ATP cannot catalyze homologous DNA strand exchange; SsbA and DprA activate strand exchange by RecA-ATP. It interacts with LexA causing its activation and leading to its autocatalytic clea [...] (348 aa)
yorLPutative DNA polymerase; Probable DNA polymerase; Belongs to the DNA polymerase type-C family. (1305 aa)
yorKPutative single-strand DNA-specific exonuclease; Putative single-stranded-DNA-specific exonuclease. (576 aa)
recODNA double strand break repair and homologous recombination factor; Plays a role in DNA double-stranded break repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecR. Is recruited to repair centers, foci that are the site of double-strand break(s) after RecN and before RecF; may actively recruit RecF. (255 aa)
holADNA polymerase delta subunit; Evidence 2b: Function of strongly homologous gene; Product type e: enzyme. (347 aa)
recDExodeoxyribonuclease V alpha chain; DNA-dependent ATPase and ATP-dependent 5'-3' DNA helicase. Has no activity on blunt DNA or DNA with 3'-overhangs, requires at least 10 bases of 5'-ssDNA for helicase activity; Belongs to the RecD family. RecD-like subfamily. (798 aa)
recJPutative single-strand DNA-specific exonuclease; Putative single-stranded-DNA-specific exonuclease (By similarity). RecA thread formation during DNA double-strand break repair requires RecJ or AadAB; Belongs to the RecJ family. (786 aa)
ruvBHolliday junction DNA helicase, ATP-dependent component; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (By similarity). Stimulates the resolution of Holliday junctions by RecU. (334 aa)
ruvAHolliday junction DNA helicase; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (201 aa)
polADNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 3'-5' and 5'-3' exonuclease activity. (880 aa)
dnaEDNA polymerase III (alpha subunit); DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The alpha chain is the DNA polymerase (By similarity); Belongs to the DNA polymerase type-C family. DnaE subfamily. (1115 aa)
ssbASingle-strand DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. Has a 20-fold higher affinity for ssDNA than SsbB; SsbA and DprA activate the homologuos DNA strand exchange function of RecA-ATP. (172 aa)
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (22%) [HD]