STRINGSTRING
ANY62169.1 ANY62169.1 ANY60854.1 ANY60854.1 ANY61373.1 ANY61373.1 ANY62036.1 ANY62036.1 ANY62185.1 ANY62185.1 ANY62699.1 ANY62699.1 ANY63048.1 ANY63048.1 nuoN nuoN ANY63074.1 ANY63074.1 ANY63075.1 ANY63075.1 nuoK nuoK ANY63077.1 ANY63077.1 nuoI nuoI nuoH nuoH ANY63080.1 ANY63080.1 ANY63081.1 ANY63081.1 nuoD nuoD nuoC nuoC nuoB nuoB nuoA nuoA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ANY62169.1Monovalent cation/H+ antiporter subunit D; Derived by automated computational analysis using gene prediction method: Protein Homology. (571 aa)
ANY60854.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (418 aa)
ANY61373.1Peptidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (565 aa)
ANY62036.1NADPH:quinone reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (192 aa)
ANY62185.1Flavodoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (167 aa)
ANY62699.1FMN-dependent NADH-azoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa)
ANY63048.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (474 aa)
nuoNNADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (497 aa)
ANY63074.1NADH-quinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. (491 aa)
ANY63075.1NADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (670 aa)
nuoKNADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa)
ANY63077.1NADH:ubiquinone oxidoreductase subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (223 aa)
nuoINADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (169 aa)
nuoHNADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (358 aa)
ANY63080.1NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (706 aa)
ANY63081.1NADH oxidoreductase (quinone) subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (457 aa)
nuoDNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (417 aa)
nuoCNADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (202 aa)
nuoBNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (159 aa)
nuoANADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (119 aa)
Your Current Organism:
Comamonas aquatica
NCBI taxonomy Id: 225991
Other names: ATCC 11330, Aquaspirillum aquaticum, C. aquatica, CCUG 15845, CCUG 17395, Commamonas terrigena DNA group 2, DSM 9155, LMG 2370, LMG:2370, NBRC 14918
Server load: low (18%) [HD]