STRINGSTRING
ausH ausH ausG ausG ausF ausF ausB ausB mdpE mdpE mdpD mdpD ausE ausE ausC ausC ausD ausD ausJ ausJ ausK ausK ausM ausM pyrG pyrG ausN ausN ausL ausL ausI ausI
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ausHAustinol synthesis protein H; Austinol synthesis protein H: Part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid [...] (174 aa)
ausGCytochrome P450 monooxygenase ausG; Cytochrome P450 monooxygenase; part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaus [...] (529 aa)
ausFAustinol synthesis protein F; Austinol synthesis protein F; Part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid [...] (177 aa)
ausBFAD-binding monooxygenase ausB; FAD-binding monooxygenase; part of the gene cluster A that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid A [...] (745 aa)
mdpEMonodictyphenone cluster transcription factor; Transcription factor that regulates the expression of the gene cluster that mediates the biosynthesis of monodictyphenone, a prenyl xanthone derivative. (435 aa)
mdpDFAD-dependent monooxygenase mdpD; FAD-dependent monooxygenase; part of the gene cluster that mediates the biosynthesis of monodictyphenone, a prenyl xanthone derivative. The pathway begins with the synthesis of atrochrysone thioester by the polyketide synthase (PKS) mdpG. The atrochrysone carboxyl ACP thioesterase mdpF then breaks the thioester bond and releases the atrochrysone carboxylic acid from mdpG. The atrochrysone carboxylic acid is then converted to atrochrysone which is further transformed into emodin anthrone. The next step is performed by the anthrone oxygenase mdpH that ca [...] (521 aa)
ausEMultifunctional dioxygenase ausE; Dioxygenase; part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid A3 by ausE vi [...] (298 aa)
ausCFAD-binding monooxygenase ausC; FAD-binding monooxygenase; part of the gene cluster A that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid A [...] (683 aa)
ausDMethyltransferase ausD; Methyltransferase; part of the gene cluster A that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid A3 by the combine [...] (282 aa)
ausJAustinol synthesis protein J; Part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid A3 by the combined action of t [...] (162 aa)
ausKAldo-keto reductase ausK; Aldo-keto reductase; part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid A3 by the com [...] (398 aa)
ausMFAD-dependent monooxygenase ausM; FAD-dependent monooxygenase; part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustino [...] (479 aa)
pyrGOrotidine 5'-phosphate decarboxylase; Belongs to the OMP decarboxylase family. (274 aa)
ausNPolyprenyl transferase ausN; Polyprenyl transferase; part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid A3 by t [...] (330 aa)
ausLTerpene cyclase ausL; Terpene cyclase; part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaustinoid A3 by the combined ac [...] (204 aa)
ausICytochrome P450 monooxygenase ausI; Cytochrome P450 monooxygenase; part of the gene cluster B that mediates the biosynthesis of austinol and dehydroaustinol, two fungal meroterpenoids. The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid by the polyketide synthase ausA. 3,5-dimethylorsellinic acid is then prenylated by the polyprenyl transferase ausN. Further epoxidation by the FAD-dependent monooxygenase ausM and cyclization by the probable terpene cyclase ausL lead to the formation of protoaustinoid A. Protoaustinoid A is then oxidized to spiro-lactone preaus [...] (499 aa)
Your Current Organism:
Aspergillus nidulans
NCBI taxonomy Id: 227321
Other names: A. nidulans FGSC A4, Aspergillus nidulans FGSC A4, Emericella nidulans FGSC A4
Server load: low (26%) [HD]