STRINGSTRING
AKH64340.1 AKH64340.1 mdh mdh ubiE ubiE nqrE nqrE AKH65419.1 AKH65419.1 AKH65418.1 AKH65418.1 AKH65385.1 AKH65385.1 AKH65215.1 AKH65215.1 fumC fumC AKH65150.1 AKH65150.1 AKH64833.1 AKH64833.1 dld dld nuoN nuoN AKH64661.1 AKH64661.1 AKH64660.1 AKH64660.1 nuoK nuoK nuoI nuoI nuoH nuoH AKH64655.1 AKH64655.1 AKH64653.1 AKH64653.1 nuoC nuoC AKH64362.1 AKH64362.1 gltA gltA AKH63285.1 AKH63285.1 sdhD sdhD sdhA sdhA sdhB sdhB AKH64336.1 AKH64336.1 sucC sucC sucD sucD AKH64332.1 AKH64332.1 AKH64331.1 AKH64331.1 AKH64286.1 AKH64286.1 prpD prpD AKH64081.1 AKH64081.1 AKH64080.1 AKH64080.1 frdC frdC aspA aspA nqrB nqrB AKH62281.1 AKH62281.1 AKH62412.1 AKH62412.1 AKH62413.1 AKH62413.1 AKH62645.1 AKH62645.1 AKH62646.1 AKH62646.1 AKH65751.1 AKH65751.1 aceK aceK AKH62886.1 AKH62886.1 ppc ppc AKH63284.1 AKH63284.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AKH64340.1Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (129 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa)
ubiEUbiquinone biosynthesis methyltransferase UbiE; Methyltransferase required for the conversion of demethylmenaquinol (DMKH2) to menaquinol (MKH2) and the conversion of 2-polyprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) to 2-polyprenyl-3- methyl-6-methoxy-1,4-benzoquinol (DMQH2). (251 aa)
nqrENa(+)-translocating NADH-quinone reductase subunit E; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (198 aa)
AKH65419.1Ubiquinol oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. (335 aa)
AKH65418.1Cytochrome D ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology. (445 aa)
AKH65385.1Cytochrome B561; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa)
AKH65215.1DMSO reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (803 aa)
fumCFumarate hydratase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (464 aa)
AKH65150.1Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (891 aa)
AKH64833.1Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa)
dldLactate dehydrogenase; Catalyzes the oxidation of D-lactate to pyruvate. Belongs to the quinone-dependent D-lactate dehydrogenase family. (571 aa)
nuoNNADH:ubiquinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (485 aa)
AKH64661.1NADH:ubiquinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. (506 aa)
AKH64660.1NADH:ubiquinone oxidoreductase subunit L; Catalyzes the transfer of electrons from NADH to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. (615 aa)
nuoKNADH:ubiquinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
nuoINADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa)
nuoHNADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa)
AKH64655.1NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (911 aa)
AKH64653.1NADH dehydrogenase; Catalyzes the transfer of electrons from NADH to quinone; Derived by automated computational analysis using gene prediction method: Protein Homology. (182 aa)
nuoCNADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (598 aa)
AKH64362.1Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (865 aa)
gltAType II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (428 aa)
AKH63285.1Sulfate ABC transporter substrate-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa)
sdhDSuccinate dehydrogenase; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (115 aa)
sdhAPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa)
sdhBPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa)
AKH64336.12-oxoglutarate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (935 aa)
sucCsuccinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa)
sucDsuccinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (291 aa)
AKH64332.1Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. (522 aa)
AKH64331.1Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. (379 aa)
AKH64286.1Catalyzes the synthesis of 2-methylcitrate from propionyl-CoA and oxaloacetate; also catalyzes the condensation of oxaloacetate with acetyl-CoA but with a lower specificity; Derived by automated computational analysis using gene prediction method: Protein Homology. (388 aa)
prpD2-methylcitrate dehydratase; Functions in propionate metabolism; involved in isomerization of (2S,3S)-methylcitrate to (2R,3S)-methylisocitrate; also encodes minor aconitase or dehydratase activity; aconitase C; Derived by automated computational analysis using gene prediction method: Protein Homology. (483 aa)
AKH64081.1Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (596 aa)
AKH64080.1Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (244 aa)
frdCFumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (130 aa)
aspAAspartate ammonia-lyase; Catalyzes the formation of fumarate from aspartate; Derived by automated computational analysis using gene prediction method: Protein Homology. (474 aa)
nqrBNa(+)-translocating NADH-quinone reductase subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (412 aa)
AKH62281.1Cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology. (144 aa)
AKH62412.1Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa)
AKH62413.1Cytochrome o ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (663 aa)
AKH62645.1Formate dehydrogenase; Cytochrome b556(FDO) component; heme containing; Derived by automated computational analysis using gene prediction method: Protein Homology. (213 aa)
AKH62646.1Formate dehydrogenase; The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. (308 aa)
AKH65751.1Formate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (803 aa)
aceKIsocitrate dehydrogenase; Bifunctional enzyme which can phosphorylate or dephosphorylate isocitrate dehydrogenase (IDH) on a specific serine residue. This is a regulatory mechanism which enables bacteria to bypass the Krebs cycle via the glyoxylate shunt in response to the source of carbon. When bacteria are grown on glucose, IDH is fully active and unphosphorylated, but when grown on acetate or ethanol, the activity of IDH declines drastically concomitant with its phosphorylation. (585 aa)
AKH62886.1Malate synthase; Catalyzes the aldol condensation of glyoxylate with acetyl-CoA to form malate as part of the second step of the glyoxylate bypass and an alternative to the tricarboxylic acid cycle; Derived by automated computational analysis using gene prediction method: Protein Homology. (532 aa)
ppcPhosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family. (878 aa)
AKH63284.1Formate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (803 aa)
Your Current Organism:
Photorhabdus thracensis
NCBI taxonomy Id: 230089
Other names: CIP 108426, DSM 15199, NCIMB 13952, P. thracensis, Photorhabdus luminescens subsp. thracensis, Photorhabdus luminescens subsp. thracensis Hazir et al. 2004, Photorhabdus temperata subsp. thracensis, Photorhabdus temperata subsp. thracensis (Hazir et al. 2004) Tailliez et al. 2010, strain 39-8
Server load: low (34%) [HD]