node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CZF1 | EFG1 | Q5A0W9 | Q59X67 | Zinc cluster transcription factor CZF1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Contributes to formation of the opaque state, but is not necessary for heritability of the opaque state. Plays a role in cell adhesion and pseudohyphal growth. Involved in acquisition of drug resistance and acts as a repressor o [...] | Enhanced filamentous growth protein 1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Antagonizes the action of WOR1, WOR2 and CZF1, and promotes the white state. In white cells, EFG1 represses WOR1 indirectly through WOR2 to maintain white cell identity. Binds target gene promoters at the EFG1 recognition sequenc [...] | 0.945 |
CZF1 | OP4 | Q5A0W9 | A0A1D8PFJ9 | Zinc cluster transcription factor CZF1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Contributes to formation of the opaque state, but is not necessary for heritability of the opaque state. Plays a role in cell adhesion and pseudohyphal growth. Involved in acquisition of drug resistance and acts as a repressor o [...] | Op4p. | 0.443 |
CZF1 | WOR1 | Q5A0W9 | Q5AP80 | Zinc cluster transcription factor CZF1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Contributes to formation of the opaque state, but is not necessary for heritability of the opaque state. Plays a role in cell adhesion and pseudohyphal growth. Involved in acquisition of drug resistance and acts as a repressor o [...] | White-opaque regulator 1; Master transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. WOR1 Binds the intergenic regions upstream of the genes encoding three additional transcriptional regulators of white-opaque switching, CZF1, EFG1, and WOR2. Phenotypic switching from the white to the opaque phase is a necessary step f [...] | 0.888 |
CZF1 | WOR2 | Q5A0W9 | Q5ANB1 | Zinc cluster transcription factor CZF1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Contributes to formation of the opaque state, but is not necessary for heritability of the opaque state. Plays a role in cell adhesion and pseudohyphal growth. Involved in acquisition of drug resistance and acts as a repressor o [...] | White-opaque regulator 2; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. WOR2 is necessary for the stability of the opaque state phenotypic switching from the white to the opaque phase is a necessary step for mating. Plays a role in cell adhesion and pseudohyphal growth. | 0.427 |
CaO19.3792 | SET5 | A0A1D8PM60 | Q5A1M3 | Uncharacterized protein. | Potential protein lysine methyltransferase SET5; Putative protein lysine methyltransferase; Belongs to the class V-like SAM-binding methyltransferase superfamily. Histone-lysine methyltransferase family. SET5 subfamily. | 0.540 |
CaO19.3792 | SET6 | A0A1D8PM60 | Q59VZ3 | Uncharacterized protein. | Set6p. | 0.507 |
EFG1 | CZF1 | Q59X67 | Q5A0W9 | Enhanced filamentous growth protein 1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Antagonizes the action of WOR1, WOR2 and CZF1, and promotes the white state. In white cells, EFG1 represses WOR1 indirectly through WOR2 to maintain white cell identity. Binds target gene promoters at the EFG1 recognition sequenc [...] | Zinc cluster transcription factor CZF1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Contributes to formation of the opaque state, but is not necessary for heritability of the opaque state. Plays a role in cell adhesion and pseudohyphal growth. Involved in acquisition of drug resistance and acts as a repressor o [...] | 0.945 |
EFG1 | OP4 | Q59X67 | A0A1D8PFJ9 | Enhanced filamentous growth protein 1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Antagonizes the action of WOR1, WOR2 and CZF1, and promotes the white state. In white cells, EFG1 represses WOR1 indirectly through WOR2 to maintain white cell identity. Binds target gene promoters at the EFG1 recognition sequenc [...] | Op4p. | 0.678 |
EFG1 | WOR1 | Q59X67 | Q5AP80 | Enhanced filamentous growth protein 1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Antagonizes the action of WOR1, WOR2 and CZF1, and promotes the white state. In white cells, EFG1 represses WOR1 indirectly through WOR2 to maintain white cell identity. Binds target gene promoters at the EFG1 recognition sequenc [...] | White-opaque regulator 1; Master transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. WOR1 Binds the intergenic regions upstream of the genes encoding three additional transcriptional regulators of white-opaque switching, CZF1, EFG1, and WOR2. Phenotypic switching from the white to the opaque phase is a necessary step f [...] | 0.900 |
EFG1 | WOR2 | Q59X67 | Q5ANB1 | Enhanced filamentous growth protein 1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Antagonizes the action of WOR1, WOR2 and CZF1, and promotes the white state. In white cells, EFG1 represses WOR1 indirectly through WOR2 to maintain white cell identity. Binds target gene promoters at the EFG1 recognition sequenc [...] | White-opaque regulator 2; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. WOR2 is necessary for the stability of the opaque state phenotypic switching from the white to the opaque phase is a necessary step for mating. Plays a role in cell adhesion and pseudohyphal growth. | 0.844 |
LEU2 | WOR1 | A0A1D8PQK5 | Q5AP80 | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. | White-opaque regulator 1; Master transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. WOR1 Binds the intergenic regions upstream of the genes encoding three additional transcriptional regulators of white-opaque switching, CZF1, EFG1, and WOR2. Phenotypic switching from the white to the opaque phase is a necessary step f [...] | 0.406 |
OP4 | CZF1 | A0A1D8PFJ9 | Q5A0W9 | Op4p. | Zinc cluster transcription factor CZF1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Contributes to formation of the opaque state, but is not necessary for heritability of the opaque state. Plays a role in cell adhesion and pseudohyphal growth. Involved in acquisition of drug resistance and acts as a repressor o [...] | 0.443 |
OP4 | EFG1 | A0A1D8PFJ9 | Q59X67 | Op4p. | Enhanced filamentous growth protein 1; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. Antagonizes the action of WOR1, WOR2 and CZF1, and promotes the white state. In white cells, EFG1 represses WOR1 indirectly through WOR2 to maintain white cell identity. Binds target gene promoters at the EFG1 recognition sequenc [...] | 0.678 |
OP4 | WOR1 | A0A1D8PFJ9 | Q5AP80 | Op4p. | White-opaque regulator 1; Master transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. WOR1 Binds the intergenic regions upstream of the genes encoding three additional transcriptional regulators of white-opaque switching, CZF1, EFG1, and WOR2. Phenotypic switching from the white to the opaque phase is a necessary step f [...] | 0.953 |
OP4 | WOR2 | A0A1D8PFJ9 | Q5ANB1 | Op4p. | White-opaque regulator 2; Transcriptional regulator of the switch between 2 heritable states, the white and opaque states. These 2 cell types differ in many characteristics, including cell structure, mating competence, and virulence. Each state is heritable for many generations, and switching between states occurs stochastically, at low frequency. WOR2 is necessary for the stability of the opaque state phenotypic switching from the white to the opaque phase is a necessary step for mating. Plays a role in cell adhesion and pseudohyphal growth. | 0.556 |
SET1 | SET2 | Q5ABG1 | Q59XV0 | Histone-lysine N-methyltransferase, H3 lysine-4 specific; Catalytic component of the COMPASS (Set1C) complex that specifically mono-, di- and trimethylates histone H3 to form H3K4me1/2/3, which subsequently plays a role in telomere length maintenance, transcription elongation regulation and pathogenesis of invasive candidiasis; Belongs to the class V-like SAM-binding methyltransferase superfamily. | Histone-lysine N-methyltransferase, H3 lysine-36 specific; Histone methyltransferase that trimethylates histone H3 'Lys- 36' forming H3K36me3. Involved in transcription elongation as well as in transcription repression; Belongs to the class V-like SAM-binding methyltransferase superfamily. Histone-lysine methyltransferase family. SET2 subfamily. | 0.985 |
SET1 | SET5 | Q5ABG1 | Q5A1M3 | Histone-lysine N-methyltransferase, H3 lysine-4 specific; Catalytic component of the COMPASS (Set1C) complex that specifically mono-, di- and trimethylates histone H3 to form H3K4me1/2/3, which subsequently plays a role in telomere length maintenance, transcription elongation regulation and pathogenesis of invasive candidiasis; Belongs to the class V-like SAM-binding methyltransferase superfamily. | Potential protein lysine methyltransferase SET5; Putative protein lysine methyltransferase; Belongs to the class V-like SAM-binding methyltransferase superfamily. Histone-lysine methyltransferase family. SET5 subfamily. | 0.836 |
SET1 | SET6 | Q5ABG1 | Q59VZ3 | Histone-lysine N-methyltransferase, H3 lysine-4 specific; Catalytic component of the COMPASS (Set1C) complex that specifically mono-, di- and trimethylates histone H3 to form H3K4me1/2/3, which subsequently plays a role in telomere length maintenance, transcription elongation regulation and pathogenesis of invasive candidiasis; Belongs to the class V-like SAM-binding methyltransferase superfamily. | Set6p. | 0.981 |
SET2 | SET1 | Q59XV0 | Q5ABG1 | Histone-lysine N-methyltransferase, H3 lysine-36 specific; Histone methyltransferase that trimethylates histone H3 'Lys- 36' forming H3K36me3. Involved in transcription elongation as well as in transcription repression; Belongs to the class V-like SAM-binding methyltransferase superfamily. Histone-lysine methyltransferase family. SET2 subfamily. | Histone-lysine N-methyltransferase, H3 lysine-4 specific; Catalytic component of the COMPASS (Set1C) complex that specifically mono-, di- and trimethylates histone H3 to form H3K4me1/2/3, which subsequently plays a role in telomere length maintenance, transcription elongation regulation and pathogenesis of invasive candidiasis; Belongs to the class V-like SAM-binding methyltransferase superfamily. | 0.985 |
SET2 | SET5 | Q59XV0 | Q5A1M3 | Histone-lysine N-methyltransferase, H3 lysine-36 specific; Histone methyltransferase that trimethylates histone H3 'Lys- 36' forming H3K36me3. Involved in transcription elongation as well as in transcription repression; Belongs to the class V-like SAM-binding methyltransferase superfamily. Histone-lysine methyltransferase family. SET2 subfamily. | Potential protein lysine methyltransferase SET5; Putative protein lysine methyltransferase; Belongs to the class V-like SAM-binding methyltransferase superfamily. Histone-lysine methyltransferase family. SET5 subfamily. | 0.774 |