node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
folA | gcvH | CV_1028 | CV_3430 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.615 |
folA | gcvP | CV_1028 | CV_3429 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Glycine cleavage system P protein; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.668 |
folA | gcvT | CV_1028 | CV_3431 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine. | 0.921 |
folA | glyA | CV_1028 | CV_1286 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.932 |
folA | thyA | CV_1028 | CV_1027 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. | 0.999 |
gcvH | folA | CV_3430 | CV_1028 | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | 0.615 |
gcvH | gcvP | CV_3430 | CV_3429 | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | Glycine cleavage system P protein; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.999 |
gcvH | gcvT | CV_3430 | CV_3431 | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine. | 0.999 |
gcvH | glyA | CV_3430 | CV_1286 | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.983 |
gcvH | thyA | CV_3430 | CV_1027 | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. | 0.649 |
gcvP | folA | CV_3429 | CV_1028 | Glycine cleavage system P protein; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | 0.668 |
gcvP | gcvH | CV_3429 | CV_3430 | Glycine cleavage system P protein; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.999 |
gcvP | gcvT | CV_3429 | CV_3431 | Glycine cleavage system P protein; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine. | 0.999 |
gcvP | glyA | CV_3429 | CV_1286 | Glycine cleavage system P protein; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.998 |
gcvP | thyA | CV_3429 | CV_1027 | Glycine cleavage system P protein; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. | 0.718 |
gcvT | folA | CV_3431 | CV_1028 | Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine. | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | 0.921 |
gcvT | gcvH | CV_3431 | CV_3430 | Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine. | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.999 |
gcvT | gcvP | CV_3431 | CV_3429 | Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine. | Glycine cleavage system P protein; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.999 |
gcvT | glyA | CV_3431 | CV_1286 | Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine. | Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.998 |
gcvT | thyA | CV_3431 | CV_1027 | Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine. | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. | 0.932 |