Your Input: | |||||
DNO_0485 | ATPase, AAA family domain protein; Identified by match to protein family HMM PF00004. (429 aa) | ||||
dnaA | Chromosomal replication initiator protein; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box): 5'- TTATC[CA]A[CA]A-3'. DnaA binds to ATP and to acidic phospholipids. Belongs to the DnaA family. (442 aa) | ||||
dnaN | DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (414 aa) | ||||
murI | Glutamate racemase; Provides the (R)-glutamate required for cell wall biosynthesis. (264 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (879 aa) | ||||
xerC | Site-specific recombinase XerC; Identified by match to protein family HMM PF00589; match to protein family HMM PF02899; Belongs to the 'phage' integrase family. (302 aa) | ||||
rpmB | 50S ribosomal protein L28; Identified by match to protein family HMM PF00830; match to protein family HMM TIGR00009; Belongs to the bacterial ribosomal protein bL28 family. (78 aa) | ||||
rpmG | 50S ribosomal protein L33; Identified by match to protein family HMM PF00471; match to protein family HMM TIGR01023; Belongs to the bacterial ribosomal protein bL33 family. (56 aa) | ||||
pth | peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (189 aa) | ||||
rplY | 50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (225 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (365 aa) | ||||
prmC | Modification methylase, HemK family; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily. (276 aa) | ||||
uvrA | Excinuclease ABC, A subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (937 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (924 aa) | ||||
rsmJ | Conserved hypothetical protein; Specifically methylates the guanosine in position 1516 of 16S rRNA. (235 aa) | ||||
rpsA | Ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (558 aa) | ||||
ihfB | Integration host factor, beta subunit; This protein is one of the two subunits of integration host factor, a specific DNA-binding protein that functions in genetic recombination as well as in transcriptional and translational control. Belongs to the bacterial histone-like protein family. (96 aa) | ||||
ssb-1 | Single-strand binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. (169 aa) | ||||
DNO_0128 | Hypothetical lipoprotein; Identified by match to protein family HMM PF06104. (248 aa) | ||||
topA | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] (802 aa) | ||||
def | Formylmethionine deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (181 aa) | ||||
fmt | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (314 aa) | ||||
rsmB | rRNA SAM-dependent methyltransferase, Fmu; Specifically methylates the cytosine at position 967 (m5C967) of 16S rRNA. (418 aa) | ||||
csy4 | Conserved hypothetical protein; Identified by match to protein family HMM TIGR02563. (202 aa) | ||||
vrlL | S-adenosyl-L-methionine-dependent methyltransferases family protein VrlL. (929 aa) | ||||
recF | DNA replication and repair protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP; Belongs to the RecF family. (356 aa) | ||||
polA | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. (901 aa) | ||||
cysS | cysteinyl-tRNA synthetase class I; Identified by match to protein family HMM PF01406; match to protein family HMM PF09190; match to protein family HMM PF09334; match to protein family HMM TIGR00435; Belongs to the class-I aminoacyl-tRNA synthetase family. (456 aa) | ||||
hsdR | Type I site-specific deoxyribonuclease; Subunit R is required for both nuclease and ATPase activities, but not for modification. (1032 aa) | ||||
hsdS | Type I restriction modification DNA specificity domain protein; Identified by match to protein family HMM PF01420. (412 aa) | ||||
hsdM | Type I restriction-modification system, M subunit; Identified by match to protein family HMM PF02384; match to protein family HMM TIGR00497. (826 aa) | ||||
trpS | tryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (333 aa) | ||||
mnmC | Conserved hypothetical protein; Catalyzes the last two steps in the biosynthesis of 5- methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position (U34) in tRNA. Catalyzes the FAD-dependent demodification of cmnm(5)s(2)U34 to nm(5)s(2)U34, followed by the transfer of a methyl group from S-adenosyl-L-methionine to nm(5)s(2)U34, to form mnm(5)s(2)U34; In the N-terminal section; belongs to the methyltransferase superfamily. tRNA (mnm(5)s(2)U34)-methyltransferase family. (618 aa) | ||||
holA | DNA polymerase III, delta subunit; Identified by match to protein family HMM PF06144; match to protein family HMM TIGR01128. (339 aa) | ||||
leuS | leucyl-tRNA synthetase; Identified by match to protein family HMM PF00133; match to protein family HMM PF08264; match to protein family HMM PF09334; match to protein family HMM TIGR00396; Belongs to the class-I aminoacyl-tRNA synthetase family. (867 aa) | ||||
lnt | Apolipoprotein N-acyltransferase; Catalyzes the phospholipid dependent N-acylation of the N- terminal cysteine of apolipoprotein, the last step in lipoprotein maturation; Belongs to the CN hydrolase family. Apolipoprotein N- acyltransferase subfamily. (521 aa) | ||||
recC | Exodeoxyribonuclease V, gamma subunit. (1090 aa) | ||||
rlmJ | Hypothetical protein; Specifically methylates the adenine in position 2030 of 23S rRNA. (288 aa) | ||||
intA1 | Integrase A1; Identified by match to protein family HMM PF00589; Belongs to the 'phage' integrase family. (401 aa) | ||||
glpA | Carbon storage regulator; A key translational regulator that binds mRNA to regulate translation initiation and/or mRNA stability. Mediates global changes in gene expression, shifting from rapid growth to stress survival by linking envelope stress, the stringent response and the catabolite repression systems. Usually binds in the 5'-UTR; binding at or near the Shine-Dalgarno sequence prevents ribosome-binding, repressing translation, binding elsewhere in the 5'-UTR can activate translation and/or stabilize the mRNA. Its function is antagonized by small RNA(s). (64 aa) | ||||
alaS | alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (873 aa) | ||||
recA | DNA recombination protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (350 aa) | ||||
uppP | Undecaprenol kinase; Catalyzes the dephosphorylation of undecaprenyl diphosphate (UPP). Confers resistance to bacitracin; Belongs to the UppP family. (267 aa) | ||||
rne | Ribonuclease E; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Belongs to the transaldolase family. Type 2 subfamily. (1233 aa) | ||||
kdsB | 3-deoxy-D-manno-octulosonate cytidylyltransferase; Activates KDO (a required 8-carbon sugar) for incorporation into bacterial lipopolysaccharide in Gram-negative bacteria. (244 aa) | ||||
uvrC | Excinuclease ABC, C subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (607 aa) | ||||
DNO_0313 | Conserved hypothetical lipoprotein. (505 aa) | ||||
gyrA | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (861 aa) | ||||
dnaB | Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins. Belongs to the helicase family. DnaB subfamily. (461 aa) | ||||
radA | DNA repair protein RadA; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. (454 aa) | ||||
DNO_0328 | Transposase IS200-like protein; Identified by match to protein family HMM PF01797. (138 aa) | ||||
gatB | glutamyl-tRNA(Gln) amidotransferase, B subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (478 aa) | ||||
valS | valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (932 aa) | ||||
priA | Primosomal protein N; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (710 aa) | ||||
kdsA | 2-dehydro-3-deoxyphosphooctonate aldolase; Identified by match to protein family HMM PF00793; match to protein family HMM TIGR01362; Belongs to the KdsA family. (277 aa) | ||||
sbcD | Exonuclease SbcD; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SbcD family. (396 aa) | ||||
uvrD-2 | DNA helicase UvrD; Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3' to 5' direction. (664 aa) | ||||
DNO_0386 | Transposase IS200-like protein; Identified by match to protein family HMM PF01797. (117 aa) | ||||
DNO_0387 | Transposase, IS605 family; Identified by match to protein family HMM PF01385; match to protein family HMM PF07282; match to protein family HMM TIGR01766. (375 aa) | ||||
ligA | DNA ligase, NAD-dependent; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA. (678 aa) | ||||
DNO_0398 | ABC transporter family ATP-binding protein; Identified by match to protein family HMM PF00005. (553 aa) | ||||
recD | Exonuclease V, alpha subunit; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Ho [...] (524 aa) | ||||
rpmE | Ribosomal protein L31; Identified by match to protein family HMM PF01197; match to protein family HMM TIGR00105. (82 aa) | ||||
prmA | Ribosomal protein L11 methyltransferase; Methylates ribosomal protein L11; Belongs to the methyltransferase superfamily. PrmA family. (294 aa) | ||||
xth-1 | Exodeoxyribonuclease III; Identified by match to protein family HMM PF03372; match to protein family HMM TIGR00195; match to protein family HMM TIGR00633. (260 aa) | ||||
murB | UDP-N-acetylenolpyruvoylglucosamine reductase; Cell wall formation. (330 aa) | ||||
holC | DNA polymerase III chi subunit; Identified by match to protein family HMM PF04364. (141 aa) | ||||
rplU | 50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (106 aa) | ||||
rpmA | 50S ribosomal protein L27; Identified by match to protein family HMM PF01016; match to protein family HMM TIGR00062; Belongs to the bacterial ribosomal protein bL27 family. (87 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (531 aa) | ||||
rlmN | Conserved hypothetical protein; Specifically methylates position 2 of adenine 2503 in 23S rRNA and position 2 of adenine 37 in tRNAs. m2A2503 modification seems to play a crucial role in the proofreading step occurring at the peptidyl transferase center and thus would serve to optimize ribosomal fidelity; Belongs to the radical SAM superfamily. RlmN family. (364 aa) | ||||
hisS | histidyl-tRNA synthetase; Identified by match to protein family HMM PF00587; match to protein family HMM PF03129; match to protein family HMM TIGR00442. (426 aa) | ||||
rplT | 50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (119 aa) | ||||
rpmI | 50S ribosomal protein L35; Identified by match to protein family HMM PF01632; match to protein family HMM TIGR00001; Belongs to the bacterial ribosomal protein bL35 family. (79 aa) | ||||
thrS | threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr). (640 aa) | ||||
nth | Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. (209 aa) | ||||
uvrB | Excinuclease ABC, B subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (669 aa) | ||||
lapB | Conserved hypothetical protein; Modulates cellular lipopolysaccharide (LPS) levels by regulating LpxC, which is involved in lipid A biosynthesis. May act by modulating the proteolytic activity of FtsH towards LpxC. May also coordinate assembly of proteins involved in LPS synthesis at the plasma membrane; Belongs to the LapB family. (381 aa) | ||||
lgt | Prolipoprotein diacylglyceryl transferase; Catalyzes the transfer of the diacylglyceryl group from phosphatidylglycerol to the sulfhydryl group of the N-terminal cysteine of a prolipoprotein, the first step in the formation of mature lipoproteins; Belongs to the Lgt family. (262 aa) | ||||
DNO_0570 | Penicillin-binding protein 1B; Cell wall formation. Synthesis of cross-linked peptidoglycan from the lipid intermediates. The enzyme has a penicillin-insensitive transglycosylase N-terminal domain (formation of linear glycan strands) and a penicillin-sensitive transpeptidase C-terminal domain (cross- linking of the peptide subunits). (791 aa) | ||||
recJ | DNA exonuclease RecJ; Identified by match to protein family HMM PF01368; match to protein family HMM PF02272; match to protein family HMM TIGR00644. (556 aa) | ||||
trmH | RNA methyltransferase, TrmH family, group 3; Identified by match to protein family HMM PF00588; match to protein family HMM PF08032; match to protein family HMM TIGR00186; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (242 aa) | ||||
DNO_0604 | lysyl-RNA synthetase; Identified by match to protein family HMM PF00152. (303 aa) | ||||
nrdA | Ribonucleotide reductase, alpha subunit; Identified by match to protein family HMM PF02867; match to protein family HMM TIGR02510. (573 aa) | ||||
DNO_0608 | Ribonucleotide reductase, beta subunit; Identified by match to protein family HMM PF00268. (325 aa) | ||||
smc | Chromosome segregation SMC family protein; Required for chromosome condensation and partitioning. Belongs to the SMC family. (1127 aa) | ||||
gyrB | DNA gyrase, B subunit; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (800 aa) | ||||
ung | uracil-DNA glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine. (229 aa) | ||||
rsmI | Tetrapyrrole methylase family protein; Catalyzes the 2'-O-methylation of the ribose of cytidine 1402 (C1402) in 16S rRNA. (280 aa) | ||||
mutY | A-G-specific adenine glycosylase; Adenine glycosylase active on G-A mispairs. (347 aa) | ||||
DNO_0652 | Modification methylase, HemK family; Identified by match to protein family HMM PF01170; match to protein family HMM PF05175; match to protein family HMM TIGR00536; Belongs to the protein N5-glutamine methyltransferase family. (300 aa) | ||||
cmoM | S-adenosylmethionine-dependent methyltransferase; Catalyzes the methylation of 5-carboxymethoxyuridine (cmo5U) to form 5-methoxycarbonylmethoxyuridine (mcmo5U) at position 34 in tRNAs; Belongs to the class I-like SAM-binding methyltransferase superfamily. CmoM family. (268 aa) | ||||
rph | Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. (238 aa) | ||||
parE | DNA topoisomerase IV, B subunit; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase family. ParE type 1 subfamily. (635 aa) | ||||
parC | DNA topoisomerase IV, A subunit; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. (739 aa) | ||||
rnhB | Ribonuclease HII; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids; Belongs to the RNase HII family. (189 aa) | ||||
dnaE | DNA polymerase III, alpha subunit; Identified by match to protein family HMM PF01336; match to protein family HMM PF02811; match to protein family HMM PF07733; match to protein family HMM TIGR00594. (1175 aa) | ||||
mfd | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1117 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (600 aa) | ||||
glyQ | glycyl-tRNA synthetase, alpha subunit; Identified by match to protein family HMM PF02091; match to protein family HMM TIGR00388. (299 aa) | ||||
glyS | glycyl-tRNA synthetase, beta subunit; Identified by match to protein family HMM PF02092; match to protein family HMM PF05746; match to protein family HMM TIGR00211. (689 aa) | ||||
trmL | rRNA methyltransferase; Methylates the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Catalyzes the methyl transfer from S-adenosyl-L-methionine to the 2'-OH of the wobble nucleotide. (159 aa) | ||||
uppS | Undecaprenyl diphosphate synthase; Catalyzes the sequential condensation of isopentenyl diphosphate (IPP) with (2E,6E)-farnesyl diphosphate (E,E-FPP) to yield (2Z,6Z,10Z,14Z,18Z,22Z,26Z,30Z,34E,38E)-undecaprenyl diphosphate (di- trans,octa-cis-UPP). UPP is the precursor of glycosyl carrier lipid in the biosynthesis of bacterial cell wall polysaccharide components such as peptidoglycan and lipopolysaccharide. (247 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
tsf | Elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (293 aa) | ||||
rpsB | Ribosomal protein S2; Identified by match to protein family HMM PF00318; match to protein family HMM TIGR01011; Belongs to the universal ribosomal protein uS2 family. (267 aa) | ||||
DNO_0730 | ABC transporter family ATP-binding protein; Identified by match to protein family HMM PF00005. (635 aa) | ||||
gltX | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (465 aa) | ||||
DNO_0762 | Hypothetical protein; Identified by Glimmer2; putative. (187 aa) | ||||
ssb-2 | Single-strand binding protein; Identified by match to protein family HMM PF00436; match to protein family HMM TIGR00621. (151 aa) | ||||
DNO_0780 | Endodeoxyribonuclease RusA family; Endonuclease that resolves Holliday junction intermediates made during homologous genetic recombination and DNA repair. Exhibits sequence and structure-selective cleavage of four-way DNA junctions, where it introduces symmetrical nicks in two strands of the same polarity at the 5' side of dinucleotides. Corrects the defects in genetic recombination and DNA repair associated with inactivation of ruvAB or ruvC; Belongs to the rusA family. (125 aa) | ||||
DNO_0784 | Bacteriophage P4-like integrase; Identified by match to protein family HMM PF00589; Belongs to the 'phage' integrase family. (399 aa) | ||||
dnaJ | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] (374 aa) | ||||
murA | UDP-N-acetylglucosamine 1- carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (419 aa) | ||||
mviN | Virulence factor MviN family protein; Involved in peptidoglycan biosynthesis. Transports lipid- linked peptidoglycan precursors from the inner to the outer leaflet of the cytoplasmic membrane. (508 aa) | ||||
rhlB | ATP-dependent rna helicase Rhl; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (432 aa) | ||||
DNO_0882 | Identified by match to protein family HMM PF00633; match to protein family HMM TIGR00426. (94 aa) | ||||
DNO_0899 | D-alanyl-D-alanine carboxypeptidase; Identified by match to protein family HMM PF00768; match to protein family HMM PF07943; Belongs to the peptidase S11 family. (375 aa) | ||||
dnaQ | DNA polymerase III, epsilon subunit; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. (233 aa) | ||||
nrdD | Ribonucleoside reductase family protein, class III; Identified by match to protein family HMM TIGR02827. (610 aa) | ||||
xth-2 | Exodeoxyribonuclease III; Identified by match to protein family HMM PF03372; match to protein family HMM TIGR00195; match to protein family HMM TIGR00633. (258 aa) | ||||
ksgA | rRNA adenine dimethylase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (263 aa) | ||||
metG | Methionyl-trna synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (673 aa) | ||||
rlmH | Conserved hypothetical protein; Specifically methylates the pseudouridine at position 1915 (m3Psi1915) in 23S rRNA; Belongs to the RNA methyltransferase RlmH family. (156 aa) | ||||
DNO_0937 | Conserved hypothetical protein; Identified by match to protein family HMM PF03734. (296 aa) | ||||
lysS | lysyl-tRNA synthetase; Identified by match to protein family HMM PF00152; match to protein family HMM PF01336; match to protein family HMM TIGR00499; Belongs to the class-II aminoacyl-tRNA synthetase family. (498 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (305 aa) | ||||
rpmH | 50S ribosomal protein L34; Identified by match to protein family HMM PF00468; match to protein family HMM TIGR01030; Belongs to the bacterial ribosomal protein bL34 family. (45 aa) | ||||
recR | Recombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (201 aa) | ||||
dnaX | DNA polymerase III, subunits gamma and tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (665 aa) | ||||
rodA | Rod shape determining protein; Peptidoglycan polymerase that is essential for cell wall elongation; Belongs to the SEDS family. MrdB/RodA subfamily. (374 aa) | ||||
DNO_0964 | Penicillin-binding protein 2; Identified by match to protein family HMM PF00905; match to protein family HMM PF03717. (630 aa) | ||||
gatC | glutamyl-tRNA(Gln) amidotransferase, C subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (96 aa) | ||||
gatA | glutamyl-tRNA(Gln) amidotransferase, A subunit; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (487 aa) | ||||
ddl | D-alanine-D-alanine ligase; Cell wall formation. (310 aa) | ||||
murC | UDP-N-acetylmuramate-alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (478 aa) | ||||
murG | N-acetylglucosaminyltransferase, MurG; Cell wall formation. Catalyzes the transfer of a GlcNAc subunit on undecaprenyl-pyrophosphoryl-MurNAc-pentapeptide (lipid intermediate I) to form undecaprenyl-pyrophosphoryl-MurNAc- (pentapeptide)GlcNAc (lipid intermediate II); Belongs to the glycosyltransferase 28 family. MurG subfamily. (363 aa) | ||||
ftsW | Cell division protein FtsW; Peptidoglycan polymerase that is essential for cell division. Belongs to the SEDS family. FtsW subfamily. (397 aa) | ||||
murD | UDP-N-acetylmuramoylalanine-D-glutamate ligase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). Belongs to the MurCDEF family. (436 aa) | ||||
mraY | phospho-N-acetylmuramoyl-pentapeptide- transferase; First step of the lipid cycle reactions in the biosynthesis of the cell wall peptidoglycan; Belongs to the glycosyltransferase 4 family. MraY subfamily. (360 aa) | ||||
murF | UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D- alanine ligase; Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein; Belongs to the MurCDEF family. MurF subfamily. (444 aa) | ||||
murE | UDP-N-acetylmuramoylalanyl-D-glutamate--2,6- diaminopimelat e ligase; Catalyzes the addition of meso-diaminopimelic acid to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan. Belongs to the MurCDEF family. MurE subfamily. (482 aa) | ||||
mraW | S-adenosyl-methyltransferase MraW; Specifically methylates the N4 position of cytidine in position 1402 (C1402) of 16S rRNA. (308 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (159 aa) | ||||
DNO_1004 | Conserved hypothetical protein; Specifically methylates the guanine in position 966 of 16S rRNA in the assembled 30S particle; Belongs to the methyltransferase superfamily. RsmD family. (189 aa) | ||||
rpsP | 30S ribosomal protein S16; Identified by match to protein family HMM PF00886; match to protein family HMM TIGR00002; Belongs to the bacterial ribosomal protein bS16 family. (84 aa) | ||||
trmD | tRNA (guanine-N1-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (259 aa) | ||||
rplS | 50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (120 aa) | ||||
recG | ATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA); Belongs to the helicase family. RecG subfamily. (684 aa) | ||||
rpsT | 30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (88 aa) | ||||
DNO_1031 | Heptosyl transferase I; Identified by match to protein family HMM PF01075; match to protein family HMM TIGR02193. (335 aa) | ||||
intA2 | Integrase A2; Identified by match to protein family HMM PF00589; Belongs to the 'phage' integrase family. (401 aa) | ||||
pnp | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (693 aa) | ||||
rpsO | 30S ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (88 aa) | ||||
argS | arginyl-tRNA synthetase; Identified by match to protein family HMM PF00750; match to protein family HMM PF03485; match to protein family HMM PF05746; match to protein family HMM TIGR00456. (592 aa) | ||||
pheS | phenylalanyl-tRNA synthetase, alpha subunit; Identified by match to protein family HMM PF01409; match to protein family HMM PF02912; match to protein family HMM TIGR00468; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (346 aa) | ||||
pheT | phenylalanyl-tRNA synthetase, beta subunit; Identified by match to protein family HMM PF01588; match to protein family HMM PF03147; match to protein family HMM PF03483; match to protein family HMM PF03484; match to protein family HMM TIGR00472; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (789 aa) | ||||
ihfA | Integration host factor, alpha subunit; This protein is one of the two subunits of integration host factor, a specific DNA-binding protein that functions in genetic recombination as well as in transcriptional and translational control. Belongs to the bacterial histone-like protein family. (98 aa) | ||||
recN | DNA repair protein RecN; May be involved in recombinational repair of damaged DNA. (552 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (426 aa) | ||||
dnaG | DNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication. (551 aa) | ||||
rpsU | 30S ribosomal protein S21; Identified by match to protein family HMM PF01165; match to protein family HMM TIGR00030; Belongs to the bacterial ribosomal protein bS21 family. (71 aa) | ||||
rlmD | 23S rRNA methyltransferase; Catalyzes the formation of 5-methyl-uridine at position 1939 (m5U1939) in 23S rRNA; Belongs to the class I-like SAM-binding methyltransferase superfamily. RNA M5U methyltransferase family. RlmD subfamily. (424 aa) | ||||
rnhA | RNase H; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. (150 aa) | ||||
glnS | glutaminyl-tRNA synthetase; Identified by match to protein family HMM PF00749; match to protein family HMM PF03950; match to protein family HMM TIGR00440. (549 aa) | ||||
mutL | DNA mismatch repair protein MutL; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex. (590 aa) | ||||
aspS | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (595 aa) | ||||
rplI | 50S ribosomal protein L9; Binds to the 23S rRNA. (149 aa) | ||||
rpsR | 30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (71 aa) | ||||
rpsF | Ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (108 aa) | ||||
rplM | 50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (143 aa) | ||||
rpsI | 30S ribosomal protein S9; Identified by match to protein family HMM PF00380; Belongs to the universal ribosomal protein uS9 family. (129 aa) | ||||
xerD | Tyrosine recombinase XerD; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. (297 aa) | ||||
mutM | formamidopyrimidine-DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. (272 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (572 aa) | ||||
glmU | UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family. (466 aa) | ||||
gidB | Glucose inhibited division protein GidB; Specifically methylates the N7 position of guanine in position 527 of 16S rRNA. (211 aa) | ||||
dam | DNA adenine methylase; Identified by match to protein family HMM PF02086; match to protein family HMM TIGR00571. (275 aa) | ||||
trmA | tRNA (uracil-5)-methyltransferase; Dual-specificity methyltransferase that catalyzes the formation of 5-methyluridine at position 54 (m5U54) in all tRNAs, and that of position 341 (m5U341) in tmRNA (transfer-mRNA). (361 aa) | ||||
recB | Exonuclease V, beta subunit; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Hol [...] (1198 aa) | ||||
ruvB | Holliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (338 aa) | ||||
ruvA | Holliday junction DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (204 aa) | ||||
ruvC | Crossover junction endodeoxyribonuclease RuvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (176 aa) | ||||
greA | Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (160 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
rpmF | 50S ribosomal protein L32; Identified by match to protein family HMM PF01783; match to protein family HMM TIGR01031; Belongs to the bacterial ribosomal protein bL32 family. (67 aa) | ||||
mltG | Aminodeoxychorismate lyase family protein; Functions as a peptidoglycan terminase that cleaves nascent peptidoglycan strands endolytically to terminate their elongation. (337 aa) | ||||
rrmJ | 23S rRNA methyltransferase; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2'-O position of the ribose in the fully assembled 50S ribosomal subunit. (210 aa) | ||||
trmB | tRNA (guanine-N(7)-)-methyltransferase; Catalyzes the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA. (222 aa) | ||||
rplQ | 50S ribosomal protein L17; Identified by match to protein family HMM PF01196; match to protein family HMM TIGR00059. (123 aa) | ||||
rpsD | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa) | ||||
rpsK | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (132 aa) | ||||
rpsM | 30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (118 aa) | ||||
rplO | 50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (144 aa) | ||||
rpmD | 50S ribosomal protein L30; Identified by match to protein family HMM PF00327; match to protein family HMM TIGR01308. (61 aa) | ||||
rpsE | 30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (171 aa) | ||||
rplR | 50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (118 aa) | ||||
rplF | 50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa) | ||||
rpsH | 30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (129 aa) | ||||
rpsN | 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (102 aa) | ||||
rplE | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa) | ||||
rplX | 50S ribosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (104 aa) | ||||
rplN | 50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rpsQ | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (87 aa) | ||||
rpmC | 50S ribosomal protein L29; Identified by match to protein family HMM PF00831; match to protein family HMM TIGR00012; Belongs to the universal ribosomal protein uL29 family. (64 aa) | ||||
rplP | 50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (137 aa) | ||||
rpsC | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (239 aa) | ||||
rplV | 50S ribosomal protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (110 aa) | ||||
rpsS | 30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (91 aa) | ||||
rplB | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (276 aa) | ||||
rplW | 50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (100 aa) | ||||
rplD | 50S ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (202 aa) | ||||
rplC | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (212 aa) | ||||
rpsJ | 30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (104 aa) | ||||
tufA | Translation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa) | ||||
fusA | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (699 aa) | ||||
rpsG | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
rpsL | 30S ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (124 aa) | ||||
rplL | 50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (122 aa) | ||||
rplJ | 50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (167 aa) | ||||
rplA | 50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (232 aa) | ||||
rplK | 50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa) | ||||
kdtA | 3-Deoxy-D-manno-octulosonic-acid transferase; Involved in lipopolysaccharide (LPS) biosynthesis. Catalyzes the transfer of 3-deoxy-D-manno-octulosonate (Kdo) residue(s) from CMP- Kdo to lipid IV(A), the tetraacyldisaccharide-1,4'-bisphosphate precursor of lipid A; Belongs to the glycosyltransferase group 1 family. (418 aa) | ||||
mutS | DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity. (861 aa) | ||||
rlmL | RNA methylase family protein; Specifically methylates the guanine in position 2445 (m2G2445) and the guanine in position 2069 (m7G2069) of 23S rRNA. Belongs to the methyltransferase superfamily. RlmKL family. (729 aa) | ||||
tyrS | tyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (400 aa) | ||||
efp | Translation elongation factor P; Involved in peptide bond synthesis. Alleviates ribosome stalling that occurs when 3 or more consecutive Pro residues or the sequence PPG is present in a protein, possibly by augmenting the peptidyl transferase activity of the ribosome. Modification of Lys-34 is required for alleviation; Belongs to the elongation factor P family. (189 aa) | ||||
DNO_1341 | Transposase, IS605 family; Identified by match to protein family HMM PF01385; match to protein family HMM PF07282; match to protein family HMM TIGR01766. (381 aa) | ||||
DNO_1342 | Transposase, IS200 family; Identified by match to protein family HMM PF01797. (138 aa) |