Your Input: | |||||
ABK74328.1 | Intracellular protease, PfpI family protein; Identified by match to protein family HMM PF01965; match to protein family HMM TIGR01382. (188 aa) | ||||
ABK75774.1 | Conserved hypothetical proline rich protein. (616 aa) | ||||
dnaK | Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. (622 aa) | ||||
grpE | Co-chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depend [...] (216 aa) | ||||
dnaJ | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] (390 aa) | ||||
ABK70298.1 | Transcriptional regulator, MerR family protein; Identified by match to protein family HMM PF00376. (119 aa) | ||||
clpB | Chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. (848 aa) | ||||
def | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (197 aa) | ||||
groL | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (541 aa) | ||||
ABK74558.1 | Conserved domain protein; Identified by match to protein family HMM PF08213. (33 aa) | ||||
gatA | glutamyl-tRNA(Gln)/aspartyl-tRNA(Asn) amidotransferase, A subunit; Identified by match to protein family HMM PF01425; Belongs to the amidase family. (466 aa) | ||||
ABK75237.1 | TROVE domain protein; Identified by match to protein family HMM PF05731. (564 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (538 aa) | ||||
rpmG | Ribosomal protein L33; Identified by match to protein family HMM PF00471; match to protein family HMM TIGR01023; Belongs to the bacterial ribosomal protein bL33 family. (55 aa) | ||||
secE | Translocase; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (144 aa) | ||||
nusG | Transcription antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (280 aa) | ||||
rplK | Ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa) | ||||
rplA | Ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (235 aa) | ||||
rplJ | 50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (175 aa) | ||||
rplL | Ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (130 aa) | ||||
rpsL | Ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (124 aa) | ||||
rpsG | Ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
tuf | Translation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa) | ||||
rpsJ | Ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (101 aa) | ||||
rplC | Ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (217 aa) | ||||
rplD | Ribosomal protein L4/L1 family protein; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (215 aa) | ||||
rplW | Ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (100 aa) | ||||
rplB | Ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (278 aa) | ||||
rpsS | Ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (93 aa) | ||||
rplV | 50S ribosomal protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (153 aa) | ||||
rpsC | Ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (275 aa) | ||||
rplP | Ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (138 aa) | ||||
rpmC | Ribosomal protein L29; Identified by match to protein family HMM PF00831; match to protein family HMM TIGR00012; Belongs to the universal ribosomal protein uL29 family. (77 aa) | ||||
rpsQ | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (98 aa) | ||||
rplN | Ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rplX | Ribosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (105 aa) | ||||
rplE | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (187 aa) | ||||
rpsN | Ribosomal protein S14p/S29e; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa) | ||||
rpsH | Ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa) | ||||
rplF | 50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (179 aa) | ||||
rplR | Ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (127 aa) | ||||
rpsE | Ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (214 aa) | ||||
rpmD | Ribosomal protein L30; Identified by match to protein family HMM PF00327; match to protein family HMM TIGR01308. (61 aa) | ||||
rplO | Ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (147 aa) | ||||
secY | Preprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (441 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (73 aa) | ||||
rpmJ | Ribosomal protein L36; Identified by match to protein family HMM PF00444; match to protein family HMM TIGR01022; Belongs to the bacterial ribosomal protein bL36 family. (37 aa) | ||||
rpsM | Ribosomal protein S13p/S18e; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (124 aa) | ||||
rpsK | Ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (138 aa) | ||||
rpsD | Ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (201 aa) | ||||
rpoA | DNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (350 aa) | ||||
rplQ | 50S ribosomal protein L17; Identified by match to protein family HMM PF01196; match to protein family HMM TIGR00059. (199 aa) | ||||
truA | tRNA pseudouridine synthase A; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs. (291 aa) | ||||
rplM | Ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (147 aa) | ||||
rpsI | Ribosomal protein S9; Identified by match to protein family HMM PF00380; Belongs to the universal ribosomal protein uS9 family. (150 aa) | ||||
groS | Chaperonin GroS; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. (100 aa) | ||||
groL-2 | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (540 aa) | ||||
ABK75687.1 | RNA pseudouridine synthase family protein; Identified by match to protein family HMM PF00849. (291 aa) | ||||
rnz | Ribonuclease Z; Zinc phosphodiesterase, which displays some tRNA 3'- processing endonuclease activity. Probably involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA; Belongs to the RNase Z family. (309 aa) | ||||
hpf | S30AE family protein; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. (230 aa) | ||||
secA | Preprotein translocase, SecA subunit; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (953 aa) | ||||
ABK73049.1 | Hypothetical protein; Identified by Glimmer2; putative. (24 aa) | ||||
ABK75427.1 | Conserved hypothetical protein; Identified by match to protein family HMM PF00462; match to protein family HMM TIGR02200. (82 aa) | ||||
groL-3 | Chaperonin GroL; Plays an essential role in the productive folding of MimA and MimC, and thus in the formation of the active MimABCD complex. Belongs to the chaperonin (HSP60) family. (549 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (368 aa) | ||||
gatC | glutamyl-tRNA(Gln) amidotransferase, C subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (99 aa) | ||||
gatA-2 | glutamyl-tRNA(Gln) amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (494 aa) | ||||
gatB | aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (503 aa) | ||||
gltX | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (486 aa) | ||||
rpmB | Ribosomal protein L28; Identified by match to protein family HMM PF00830; match to protein family HMM TIGR00009; Belongs to the bacterial ribosomal protein bL28 family. (64 aa) | ||||
ftsY | Signal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (491 aa) | ||||
ffh | Signal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (522 aa) | ||||
rpsP | 30S ribosomal protein S16; Identified by match to protein family HMM PF00886; match to protein family HMM TIGR00002; Belongs to the bacterial ribosomal protein bS16 family. (156 aa) | ||||
ABK70570.1 | Conserved hypothetical protein; Belongs to the UPF0109 family. (76 aa) | ||||
rimM | 16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (173 aa) | ||||
trmD | tRNA (guanine-N1)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (225 aa) | ||||
rplS | Ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (113 aa) | ||||
rpsB | Ribosomal protein S2; Identified by match to protein family HMM PF00318; match to protein family HMM TIGR01011; Belongs to the universal ribosomal protein uS2 family. (291 aa) | ||||
tsf | Translation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (275 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (248 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
map-2 | Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (285 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (585 aa) | ||||
rimP | Conserved hypothetical protein; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (181 aa) | ||||
nusA | Transcription termination factor NusA; Participates in both transcription termination and antitermination. (343 aa) | ||||
ABK72621.1 | Conserved hypothetical protein; Identified by match to protein family HMM PF04296. (116 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (610 aa) | ||||
rbfA | Ribosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (156 aa) | ||||
ABK75992.1 | DHH family protein; Identified by match to protein family HMM PF01368; match to protein family HMM PF02272. (340 aa) | ||||
ABK71516.1 | Identified by match to protein family HMM PF01554; match to protein family HMM TIGR00797. (455 aa) | ||||
truB | tRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (303 aa) | ||||
rpsO | Ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa) | ||||
gpsI | Guanosine pentaphosphate synthetase I/polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (763 aa) | ||||
rnj | Metallo-beta-lactamase superfamily protein; An RNase that has endonuclease and 5'-3' exonuclease activity. The 5'-exonuclease activity acts on 5'-monophosphate but not 5'-triphosphate ends. Endonuclease activity can cleave within 4 nucleotides of the 5'-end of a triphosphorylated RNA. Plays the major role in pre-23S rRNA maturation, and a minor role in processing of pre- 5S and pre-16S rRNA. (558 aa) | ||||
hflX | GTP-binding protein; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. HflX GTPase family. (470 aa) | ||||
ABK70160.1 | Clp amino terminal domain protein; Identified by match to protein family HMM PF02861. (244 aa) | ||||
yajC | Preprotein translocase, YajC subunit; Identified by match to protein family HMM PF02699; match to protein family HMM TIGR00739. (107 aa) | ||||
secD | Protein-export membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (620 aa) | ||||
secF | Protein-export membrane protein SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (422 aa) | ||||
ABK72178.1 | Bacterial extracellular solute-binding protein, family protein 5; Identified by match to protein family HMM PF00496. (555 aa) | ||||
hisS | histidyl-tRNA synthetase; Identified by match to protein family HMM PF00587; match to protein family HMM PF03129; match to protein family HMM TIGR00442. (426 aa) | ||||
aspS | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (598 aa) | ||||
efp | Translation elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (187 aa) | ||||
nusB | Transcription antitermination factor NusB; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (160 aa) | ||||
ABK76141.1 | Integration host factor. (105 aa) | ||||
secG | Preprotein translocase, SecG subunit; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (78 aa) | ||||
trx | Thioredoxin; Identified by match to protein family HMM PF00085; match to protein family HMM TIGR01068; Belongs to the thioredoxin family. (124 aa) | ||||
ABK70275.1 | Band 7 protein; Identified by match to protein family HMM PF01145. (408 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1040 aa) | ||||
ABK69948.1 | Hypothetical protein; Identified by Glimmer2; putative. (133 aa) | ||||
tpx | Thiol peroxidase; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides. (164 aa) | ||||
ABK75167.1 | Dopamine receptor D4. (142 aa) | ||||
ABK74356.1 | Hypothetical protein; Identified by Glimmer2; putative. (207 aa) | ||||
lon | ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. (779 aa) | ||||
secA2 | ATPase SecA2; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (784 aa) | ||||
ABK75283.1 | Macrolide-transport ATP-binding protein abc transporter; Identified by match to protein family HMM PF00005. (590 aa) | ||||
pheT | phenylalanyl-tRNA synthetase, beta subunit; Identified by match to protein family HMM PF01588; match to protein family HMM PF03147; match to protein family HMM PF03483; match to protein family HMM PF03484; match to protein family HMM TIGR00472; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (832 aa) | ||||
pheS | phenylalanyl-tRNA synthetase, alpha subunit; Identified by match to protein family HMM PF01409; match to protein family HMM PF02912; match to protein family HMM TIGR00468; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (356 aa) | ||||
ABK71160.1 | RNA methyltransferase, TrmH family protein; Identified by match to protein family HMM PF00588; match to protein family HMM PF08032; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (252 aa) | ||||
rplT | Ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (129 aa) | ||||
rpmI | Ribosomal protein L35; Identified by match to protein family HMM PF01632; match to protein family HMM TIGR00001; Belongs to the bacterial ribosomal protein bL35 family. (64 aa) | ||||
infC | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (206 aa) | ||||
lysX | lysyl-tRNA synthetase; Catalyzes the production of L-lysyl-tRNA(Lys)transfer and the transfer of a lysyl group from L-lysyl-tRNA(Lys) to membrane-bound phosphatidylglycerol (PG), which produces lysylphosphatidylglycerol (LPG), one of the components of the bacterial membrane with a positive net charge. LPG synthesis contributes to the resistance to cationic antimicrobial peptides (CAMPs) and likely protects M.tuberculosis against the CAMPs produced by competiting microorganisms (bacteriocins). In fact, the modification of anionic phosphatidylglycerol with positively charged L-lysine res [...] (1089 aa) | ||||
rpsA | 30S ribosomal protein S1; Binds mRNA, facilitating recognition of most mRNAs by the 30S ribosomal subunit during translation initiation (By similarity). Plays a role in trans-translation; binds tmRNA (the product of the ssrA gene). Binds very poorly to pyrazinoic acid (POA), the active form of the prodrug pyrazinamide (PZA); POA does not disrupt trans-translation in this organism. M.smegmatis is resistant to the antibiotic PZA. In trans-translation Ala-aminoacylated transfer-messenger RNA (tmRNA, product of the ssrA gene; the 2 termini fold to resemble tRNA(Ala) while it encodes a shor [...] (479 aa) | ||||
ABK72744.1 | Methyltransferase; Identified by match to protein family HMM PF03848; match to protein family HMM PF05724; match to protein family HMM PF07992. (518 aa) | ||||
glyS | glycyl-tRNA synthetase; Catalyzes the attachment of glycine to tRNA(Gly). Belongs to the class-II aminoacyl-tRNA synthetase family. (461 aa) | ||||
hrcA | Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. (343 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (631 aa) | ||||
rnz-2 | Ribonuclease Z; Zinc phosphodiesterase, which displays some tRNA 3'- processing endonuclease activity. Probably involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA. (286 aa) | ||||
rpsT | Ribosomal protein S20; Binds directly to 16S ribosomal RNA. (86 aa) | ||||
ABK74394.1 | SpfH domain protein; Identified by match to protein family HMM PF01145. (268 aa) | ||||
rsfS | Conserved domain protein; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation. (133 aa) | ||||
obg | GTP-binding protein Obg/CgtA; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (485 aa) | ||||
rpmA | Ribosomal protein L27; Identified by match to protein family HMM PF01016; match to protein family HMM TIGR00062; Belongs to the bacterial ribosomal protein bL27 family. (88 aa) | ||||
rplU | Ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa) | ||||
rne | Ribonuclease, Rne/Rng family protein; Endoribonuclease that plays a central role in RNA processing and decay. Plays a major role in pre-16S rRNA maturation, probably generating the mature 5'-end, and a minor role in pre-5S and pre-23S rRNA maturation. (1037 aa) | ||||
valS | valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (872 aa) | ||||
clpX | ATP-dependent Clp protease, ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. (426 aa) | ||||
clpP | Clp protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (218 aa) | ||||
clpP-2 | Clp protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (203 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (469 aa) | ||||
orn | Oligoribonuclease; 3'-to-5' exoribonuclease specific for small oligoribonucleotides; Belongs to the oligoribonuclease family. (216 aa) | ||||
ABK73462.1 | IS1096, tnpR protein; Identified by similarity to GP:150004; match to protein family HMM PF07929. (233 aa) | ||||
wecA | Glycosyl trasferase; Involved in the biosynthesis of the disaccharide D-N- acetylglucosamine-L-rhamnose which plays an important role in the mycobacterial cell wall as a linker connecting arabinogalactan and peptidoglycan via a phosphodiester linkage. Catalyzes the transfer of the N-acetylglucosamine-1-phosphate (GlcNAc-1P) moiety from UDP-GlcNAc onto the carrier lipid decaprenyl phosphate (C50-P), yielding GlcNAc- pyrophosphoryl-decaprenyl (GlcNAc-PP-C50). (406 aa) | ||||
ABK69723.1 | Identified by match to protein family HMM PF01300; match to protein family HMM TIGR00057; Belongs to the SUA5 family. (221 aa) | ||||
prmC | Modification methylase, HemK family protein; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily. (281 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (359 aa) | ||||
rpmE | Ribosomal protein L31; Binds the 23S rRNA. (75 aa) | ||||
rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (664 aa) | ||||
argS | arginyl-tRNA synthetase; Identified by match to protein family HMM PF00750; match to protein family HMM PF03485; match to protein family HMM PF05746; match to protein family HMM TIGR00456. (550 aa) | ||||
ABK70031.1 | Identified by match to protein family HMM PF01694. (250 aa) | ||||
ychF | GTP-binding protein YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner. (368 aa) | ||||
rplY | Ribosomal protein L25, Ctc-form; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (215 aa) | ||||
pth | peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (191 aa) | ||||
metG | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 2B subfamily. (515 aa) | ||||
rpmF | Ribosomal protein L32; Identified by match to protein family HMM PF01783; match to protein family HMM TIGR01031; Belongs to the bacterial ribosomal protein bL32 family. (57 aa) | ||||
map-4 | Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (254 aa) | ||||
rpsR | Ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (85 aa) | ||||
rpsN-2 | 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa) | ||||
rpmG-2 | Ribosomal protein L33; Identified by match to protein family HMM PF00471; match to protein family HMM TIGR01023; Belongs to the bacterial ribosomal protein bL33 family. (54 aa) | ||||
rpmB-2 | Ribosomal protein L28; Identified by match to protein family HMM PF00830; match to protein family HMM TIGR00009; Belongs to the bacterial ribosomal protein bL28 family. (78 aa) | ||||
rpmE-2 | Ribosomal protein L31; Identified by match to protein family HMM PF01197; Belongs to the bacterial ribosomal protein bL31 family. (82 aa) | ||||
ABK75506.1 | RNA methyltransferase, TrmH family protein, group 3; Identified by match to protein family HMM PF00588; match to protein family HMM PF08032; match to protein family HMM TIGR00186; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (314 aa) | ||||
cysS-2 | cysteinyl-tRNA synthetase; Identified by match to protein family HMM PF01406; match to protein family HMM TIGR00435; Belongs to the class-I aminoacyl-tRNA synthetase family. (477 aa) | ||||
clpC1 | Negative regulator of genetic competence ClpC/mecB; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (By similarity). Degrades anti-sigma-E factor RseA in the presence of ClpP2 (Probable); Belongs to the ClpA/ClpB family. ClpC subfamily. (848 aa) | ||||
lysS | lysyl-tRNA synthetase; Identified by match to protein family HMM PF00152; match to protein family HMM PF01336; match to protein family HMM TIGR00499; Belongs to the class-II aminoacyl-tRNA synthetase family. (507 aa) | ||||
ftsH | Cell division protein; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. (770 aa) | ||||
ABK70646.1 | ATP-dependent rna helicase, dead/deah box family protein; Identified by match to protein family HMM PF00270; match to protein family HMM PF00271. (776 aa) | ||||
gltX-2 | glutamyl-tRNA synthetase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon; Belongs to the class-I aminoacyl-tRNA synthetase family. GluQ subfamily. (292 aa) | ||||
ABK73573.1 | Translation elongation factor EF-G; Identified by match to protein family HMM PF00009; match to protein family HMM PF00679; match to protein family HMM PF03144; match to protein family HMM PF03764; match to protein family HMM TIGR00231. (731 aa) | ||||
rplI | Ribosomal protein L9; Binds to the 23S rRNA. (151 aa) | ||||
rpsR-2 | Ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (84 aa) | ||||
rpsF | Ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (90 aa) | ||||
leuS | leucyl-tRNA synthetase; Identified by match to protein family HMM TIGR00396; Belongs to the class-I aminoacyl-tRNA synthetase family. (953 aa) | ||||
ABK73691.1 | tRNA adenylyltransferase; Identified by match to protein family HMM PF01743; match to protein family HMM PF01966; match to protein family HMM TIGR00277; match to protein family HMM TIGR02692; Belongs to the tRNA nucleotidyltransferase/poly(A) polymerase family. (480 aa) | ||||
trxB | Thioredoxin-disulfide reductase; Identified by match to protein family HMM PF00070; match to protein family HMM PF07992; match to protein family HMM TIGR01292. (311 aa) | ||||
trx-2 | Thioredoxin; Identified by match to protein family HMM PF00085; match to protein family HMM TIGR01068; Belongs to the thioredoxin family. (110 aa) | ||||
ABK73674.1 | ParB-like partition proteins; Identified by match to protein family HMM PF02195; match to protein family HMM TIGR00180; Belongs to the ParB family. (351 aa) | ||||
ABK74964.1 | Soj family protein; Identified by match to protein family HMM PF01656. (323 aa) | ||||
gidB | Methyltransferase GidB; Specifically methylates the N7 position of guanine in position 518 of 16S rRNA; Belongs to the methyltransferase superfamily. RNA methyltransferase RsmG family. (235 aa) | ||||
ABK73535.1 | R3H domain-containing protein; Identified by match to protein family HMM PF01424. (183 aa) | ||||
ABK74344.1 | Membrane protein OxaA; Identified by match to protein family HMM PF02096. (367 aa) | ||||
ABK71467.1 | Conserved hypothetical protein, putative; Could be involved in insertion of integral membrane proteins into the membrane; Belongs to the UPF0161 family. (115 aa) | ||||
rnpA | Ribonuclease P protein component; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. (123 aa) | ||||
rpmH | Ribosomal protein L34; Identified by match to protein family HMM PF00468; match to protein family HMM TIGR01030; Belongs to the bacterial ribosomal protein bL34 family. (47 aa) |