STRINGSTRING
def def ABK74558.1 ABK74558.1 prfC prfC rpmG rpmG secE secE nusG nusG rplK rplK rplA rplA rplJ rplJ rplL rplL rpsL rpsL rpsG rpsG tuf tuf rpsJ rpsJ rplC rplC rplD rplD rplW rplW rplB rplB rpsS rpsS rplV rplV rpsC rpsC rplP rplP rpmC rpmC rpsQ rpsQ rplN rplN rplX rplX rplE rplE rpsN rpsN rpsH rpsH rplF rplF rplR rplR rpsE rpsE rpmD rpmD rplO rplO secY secY infA infA rpmJ rpmJ rpsM rpsM rpsK rpsK rpsD rpsD rpoA rpoA rplQ rplQ rplM rplM rpsI rpsI hpf hpf secA secA ABK73049.1 ABK73049.1 prfB prfB rpmB rpmB ftsY ftsY ffh ffh rpsP rpsP rimM rimM trmD trmD rplS rplS rpsB rpsB tsf tsf pyrH pyrH frr frr map-2 map-2 rimP rimP nusA nusA ABK72621.1 ABK72621.1 infB infB rbfA rbfA ABK75992.1 ABK75992.1 ABK71516.1 ABK71516.1 truB truB rpsO rpsO hflX hflX yajC yajC secD secD secF secF ABK72178.1 ABK72178.1 efp efp nusB nusB ABK76141.1 ABK76141.1 secG secG ABK69948.1 ABK69948.1 ABK75167.1 ABK75167.1 ABK74356.1 ABK74356.1 secA2 secA2 ABK75283.1 ABK75283.1 rplT rplT rpmI rpmI infC infC rpsA rpsA lepA lepA rpsT rpsT rpmA rpmA rplU rplU tig tig rpmE rpmE ychF ychF rplY rplY pth pth rpmF rpmF map-4 map-4 rpsR rpsR rpsN-2 rpsN-2 rpmG-2 rpmG-2 rpmB-2 rpmB-2 rpmE-2 rpmE-2 ABK73573.1 ABK73573.1 rplI rplI rpsR-2 rpsR-2 rpsF rpsF rpmH rpmH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
defPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (197 aa)
ABK74558.1Conserved domain protein; Identified by match to protein family HMM PF08213. (33 aa)
prfCPeptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (538 aa)
rpmGRibosomal protein L33; Identified by match to protein family HMM PF00471; match to protein family HMM TIGR01023; Belongs to the bacterial ribosomal protein bL33 family. (55 aa)
secETranslocase; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (144 aa)
nusGTranscription antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (280 aa)
rplKRibosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa)
rplARibosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (235 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (175 aa)
rplLRibosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (130 aa)
rpsLRibosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (124 aa)
rpsGRibosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
tufTranslation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa)
rpsJRibosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (101 aa)
rplCRibosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (217 aa)
rplDRibosomal protein L4/L1 family protein; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (215 aa)
rplWRibosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (100 aa)
rplBRibosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (278 aa)
rpsSRibosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (93 aa)
rplV50S ribosomal protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (153 aa)
rpsCRibosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (275 aa)
rplPRibosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (138 aa)
rpmCRibosomal protein L29; Identified by match to protein family HMM PF00831; match to protein family HMM TIGR00012; Belongs to the universal ribosomal protein uL29 family. (77 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (98 aa)
rplNRibosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rplXRibosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (105 aa)
rplE50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (187 aa)
rpsNRibosomal protein S14p/S29e; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa)
rpsHRibosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (179 aa)
rplRRibosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (127 aa)
rpsERibosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (214 aa)
rpmDRibosomal protein L30; Identified by match to protein family HMM PF00327; match to protein family HMM TIGR01308. (61 aa)
rplORibosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (147 aa)
secYPreprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (441 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (73 aa)
rpmJRibosomal protein L36; Identified by match to protein family HMM PF00444; match to protein family HMM TIGR01022; Belongs to the bacterial ribosomal protein bL36 family. (37 aa)
rpsMRibosomal protein S13p/S18e; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (124 aa)
rpsKRibosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (138 aa)
rpsDRibosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (201 aa)
rpoADNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (350 aa)
rplQ50S ribosomal protein L17; Identified by match to protein family HMM PF01196; match to protein family HMM TIGR00059. (199 aa)
rplMRibosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (147 aa)
rpsIRibosomal protein S9; Identified by match to protein family HMM PF00380; Belongs to the universal ribosomal protein uS9 family. (150 aa)
hpfS30AE family protein; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. (230 aa)
secAPreprotein translocase, SecA subunit; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (953 aa)
ABK73049.1Hypothetical protein; Identified by Glimmer2; putative. (24 aa)
prfBPeptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (368 aa)
rpmBRibosomal protein L28; Identified by match to protein family HMM PF00830; match to protein family HMM TIGR00009; Belongs to the bacterial ribosomal protein bL28 family. (64 aa)
ftsYSignal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (491 aa)
ffhSignal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (522 aa)
rpsP30S ribosomal protein S16; Identified by match to protein family HMM PF00886; match to protein family HMM TIGR00002; Belongs to the bacterial ribosomal protein bS16 family. (156 aa)
rimM16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (173 aa)
trmDtRNA (guanine-N1)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (225 aa)
rplSRibosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (113 aa)
rpsBRibosomal protein S2; Identified by match to protein family HMM PF00318; match to protein family HMM TIGR01011; Belongs to the universal ribosomal protein uS2 family. (291 aa)
tsfTranslation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (275 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (248 aa)
frrRibosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa)
map-2Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (285 aa)
rimPConserved hypothetical protein; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (181 aa)
nusATranscription termination factor NusA; Participates in both transcription termination and antitermination. (343 aa)
ABK72621.1Conserved hypothetical protein; Identified by match to protein family HMM PF04296. (116 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (610 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (156 aa)
ABK75992.1DHH family protein; Identified by match to protein family HMM PF01368; match to protein family HMM PF02272. (340 aa)
ABK71516.1Identified by match to protein family HMM PF01554; match to protein family HMM TIGR00797. (455 aa)
truBtRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (303 aa)
rpsORibosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa)
hflXGTP-binding protein; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. HflX GTPase family. (470 aa)
yajCPreprotein translocase, YajC subunit; Identified by match to protein family HMM PF02699; match to protein family HMM TIGR00739. (107 aa)
secDProtein-export membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (620 aa)
secFProtein-export membrane protein SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (422 aa)
ABK72178.1Bacterial extracellular solute-binding protein, family protein 5; Identified by match to protein family HMM PF00496. (555 aa)
efpTranslation elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (187 aa)
nusBTranscription antitermination factor NusB; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (160 aa)
ABK76141.1Integration host factor. (105 aa)
secGPreprotein translocase, SecG subunit; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (78 aa)
ABK69948.1Hypothetical protein; Identified by Glimmer2; putative. (133 aa)
ABK75167.1Dopamine receptor D4. (142 aa)
ABK74356.1Hypothetical protein; Identified by Glimmer2; putative. (207 aa)
secA2ATPase SecA2; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (784 aa)
ABK75283.1Macrolide-transport ATP-binding protein abc transporter; Identified by match to protein family HMM PF00005. (590 aa)
rplTRibosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (129 aa)
rpmIRibosomal protein L35; Identified by match to protein family HMM PF01632; match to protein family HMM TIGR00001; Belongs to the bacterial ribosomal protein bL35 family. (64 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (206 aa)
rpsA30S ribosomal protein S1; Binds mRNA, facilitating recognition of most mRNAs by the 30S ribosomal subunit during translation initiation (By similarity). Plays a role in trans-translation; binds tmRNA (the product of the ssrA gene). Binds very poorly to pyrazinoic acid (POA), the active form of the prodrug pyrazinamide (PZA); POA does not disrupt trans-translation in this organism. M.smegmatis is resistant to the antibiotic PZA. In trans-translation Ala-aminoacylated transfer-messenger RNA (tmRNA, product of the ssrA gene; the 2 termini fold to resemble tRNA(Ala) while it encodes a shor [...] (479 aa)
lepAGTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (631 aa)
rpsTRibosomal protein S20; Binds directly to 16S ribosomal RNA. (86 aa)
rpmARibosomal protein L27; Identified by match to protein family HMM PF01016; match to protein family HMM TIGR00062; Belongs to the bacterial ribosomal protein bL27 family. (88 aa)
rplURibosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa)
tigTrigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (469 aa)
rpmERibosomal protein L31; Binds the 23S rRNA. (75 aa)
ychFGTP-binding protein YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner. (368 aa)
rplYRibosomal protein L25, Ctc-form; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (215 aa)
pthpeptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (191 aa)
rpmFRibosomal protein L32; Identified by match to protein family HMM PF01783; match to protein family HMM TIGR01031; Belongs to the bacterial ribosomal protein bL32 family. (57 aa)
map-4Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (254 aa)
rpsRRibosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (85 aa)
rpsN-230S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa)
rpmG-2Ribosomal protein L33; Identified by match to protein family HMM PF00471; match to protein family HMM TIGR01023; Belongs to the bacterial ribosomal protein bL33 family. (54 aa)
rpmB-2Ribosomal protein L28; Identified by match to protein family HMM PF00830; match to protein family HMM TIGR00009; Belongs to the bacterial ribosomal protein bL28 family. (78 aa)
rpmE-2Ribosomal protein L31; Identified by match to protein family HMM PF01197; Belongs to the bacterial ribosomal protein bL31 family. (82 aa)
ABK73573.1Translation elongation factor EF-G; Identified by match to protein family HMM PF00009; match to protein family HMM PF00679; match to protein family HMM PF03144; match to protein family HMM PF03764; match to protein family HMM TIGR00231. (731 aa)
rplIRibosomal protein L9; Binds to the 23S rRNA. (151 aa)
rpsR-2Ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (84 aa)
rpsFRibosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (90 aa)
rpmHRibosomal protein L34; Identified by match to protein family HMM PF00468; match to protein family HMM TIGR01030; Belongs to the bacterial ribosomal protein bL34 family. (47 aa)
Your Current Organism:
Mycolicibacterium smegmatis
NCBI taxonomy Id: 246196
Other names: M. smegmatis MC2 155, Mycobacterium smegmatis MC2 155, Mycolicibacterium smegmatis MC2 155
Server load: low (32%) [HD]