Your Input: | |||||
| A3224_00210 | MATE family efflux transporter; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (381 aa) | ||||
| AMX01213.1 | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (516 aa) | ||||
| AMX01214.1 | Cytochrome C oxidase assembly protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (190 aa) | ||||
| AMX01215.1 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (296 aa) | ||||
| AMX03959.1 | Derived by automated computational analysis using gene prediction method: Protein Homology. (352 aa) | ||||
| cyoE | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (297 aa) | ||||
| AMX04028.1 | Cytochrome BD ubiquinol oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. (334 aa) | ||||
| AMX01773.1 | Cytochrome D ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa) | ||||
| ppa | Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (178 aa) | ||||
| AMX02043.1 | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (198 aa) | ||||
| AMX02044.1 | Ubiquinol-cytochrome C reductase; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (733 aa) | ||||
| AMX02087.1 | Succinate dehydrogenase, cytochrome b556 subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (124 aa) | ||||
| AMX02088.1 | Succinate dehydrogenase; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (122 aa) | ||||
| sdhA | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (590 aa) | ||||
| sdhB | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa) | ||||
| AMX04205.1 | Cytochrome C oxidase Cbb3; C-type cytochrome. Part of the cbb3-type cytochrome c oxidase complex. (293 aa) | ||||
| AMX03037.1 | Cytochrome C oxidase Cbb3; Derived by automated computational analysis using gene prediction method: Protein Homology. (72 aa) | ||||
| AMX03038.1 | Cytochrome C oxidase Cbb3; CcoO; FixO; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa) | ||||
| AMX03039.1 | Cytochrome C oxidase Cbb3; CcoN; FixN; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (484 aa) | ||||
| nuoA | NADH:ubiquinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (137 aa) | ||||
| nuoB | NADH-quinone oxidoreductase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (215 aa) | ||||
| nuoC | NADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (601 aa) | ||||
| AMX04209.1 | NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (183 aa) | ||||
| AMX03064.1 | NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (428 aa) | ||||
| AMX03065.1 | Hypothetical protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (942 aa) | ||||
| nuoH | NADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (318 aa) | ||||
| nuoI | NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (171 aa) | ||||
| AMX03067.1 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (175 aa) | ||||
| nuoK | NADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (105 aa) | ||||
| AMX03069.1 | NADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (618 aa) | ||||
| nuoN | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (509 aa) | ||||
| ppk | RNA degradosome polyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP). Belongs to the polyphosphate kinase 1 (PPK1) family. (685 aa) | ||||
| AMX03381.1 | NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (435 aa) | ||||
| AMX04245.1 | Metal-transporting ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (838 aa) | ||||
| atpC | F0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (139 aa) | ||||
| atpD | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (467 aa) | ||||
| atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (286 aa) | ||||
| atpA | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (514 aa) | ||||
| atpH | F0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (178 aa) | ||||
| atpF | F0F1 ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa) | ||||
| atpE | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa) | ||||
| atpB | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (308 aa) | ||||