node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
RPA4052 | aroA | RPA4052 | RPA0061 | Possible 3-dehydroquinate synthase; Observed by proteomics; Citation: Proteomics from VerBerkmoes et al. (2003) unpublished. | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. | 0.982 |
RPA4052 | aroB | RPA4052 | RPA0503 | Possible 3-dehydroquinate synthase; Observed by proteomics; Citation: Proteomics from VerBerkmoes et al. (2003) unpublished. | Putative 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. | 0.926 |
RPA4052 | aroC | RPA4052 | RPA1201 | Possible 3-dehydroquinate synthase; Observed by proteomics; Citation: Proteomics from VerBerkmoes et al. (2003) unpublished. | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | 0.969 |
RPA4052 | aroE | RPA4052 | RPA4325 | Possible 3-dehydroquinate synthase; Observed by proteomics; Citation: Proteomics from VerBerkmoes et al. (2003) unpublished. | Putative shikimate 5-dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). | 0.806 |
RPA4052 | aroK | RPA4052 | RPA0504 | Possible 3-dehydroquinate synthase; Observed by proteomics; Citation: Proteomics from VerBerkmoes et al. (2003) unpublished. | Putative shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. | 0.996 |
aroA | RPA4052 | RPA0061 | RPA4052 | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. | Possible 3-dehydroquinate synthase; Observed by proteomics; Citation: Proteomics from VerBerkmoes et al. (2003) unpublished. | 0.982 |
aroA | aroB | RPA0061 | RPA0503 | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. | Putative 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. | 0.984 |
aroA | aroC | RPA0061 | RPA1201 | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | 0.996 |
aroA | aroE | RPA0061 | RPA4325 | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. | Putative shikimate 5-dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). | 0.983 |
aroA | aroK | RPA0061 | RPA0504 | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. | Putative shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. | 0.984 |
aroB | RPA4052 | RPA0503 | RPA4052 | Putative 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. | Possible 3-dehydroquinate synthase; Observed by proteomics; Citation: Proteomics from VerBerkmoes et al. (2003) unpublished. | 0.926 |
aroB | aroA | RPA0503 | RPA0061 | Putative 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. | 0.984 |
aroB | aroC | RPA0503 | RPA1201 | Putative 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | 0.970 |
aroB | aroE | RPA0503 | RPA4325 | Putative 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. | Putative shikimate 5-dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). | 0.993 |
aroB | aroK | RPA0503 | RPA0504 | Putative 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. | Putative shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. | 0.999 |
aroC | RPA4052 | RPA1201 | RPA4052 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Possible 3-dehydroquinate synthase; Observed by proteomics; Citation: Proteomics from VerBerkmoes et al. (2003) unpublished. | 0.969 |
aroC | aroA | RPA1201 | RPA0061 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. | 0.996 |
aroC | aroB | RPA1201 | RPA0503 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Putative 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. | 0.970 |
aroC | aroE | RPA1201 | RPA4325 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Putative shikimate 5-dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). | 0.905 |
aroC | aroK | RPA1201 | RPA0504 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Putative shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. | 0.858 |