STRINGSTRING
AEJ02808.1 AEJ02808.1 AEJ01185.1 AEJ01185.1 AEJ01428.1 AEJ01428.1 AEJ01429.1 AEJ01429.1 AEJ01430.1 AEJ01430.1 AEJ01432.1 AEJ01432.1 nuoN nuoN AEJ02672.1 AEJ02672.1 AEJ02673.1 AEJ02673.1 nuoK nuoK AEJ02675.1 AEJ02675.1 nuoI nuoI AEJ02678.1 AEJ02678.1 AEJ02679.1 AEJ02679.1 nuoD nuoD nuoC nuoC nuoB nuoB nuoA nuoA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AEJ02808.1PFAM: NADPH-dependent FMN reductase; KEGG: pna:Pnap_0016 NADPH-dependent FMN reductase. (375 aa)
AEJ01185.1PFAM: NADH:ubiquinone oxidoreductase, subunit G, iron-sulphur binding; Ferredoxin; KEGG: mca:MCA2725 NAD-reducing hydrogenase, gamma subunit. (243 aa)
AEJ01428.1KEGG: nhl:Nhal_2893 proton-translocating NADH-quinone oxidoreductase, chain M; TIGRFAM: NADH-quinone oxidoreductase, chain M; PFAM: NADH:ubiquinone/plastoquinone oxidoreductase. (501 aa)
AEJ01429.1KEGG: nhl:Nhal_2894 proton-translocating NADH-quinone oxidoreductase, chain M; TIGRFAM: NADH-quinone oxidoreductase, chain M; PFAM: NADH:ubiquinone/plastoquinone oxidoreductase. (530 aa)
AEJ01430.1NADH/Ubiquinone/plastoquinone (complex I); PFAM: NADH:ubiquinone/plastoquinone oxidoreductase; NADH:ubiquinone oxidoreductase, chain 5/L, N-terminal; KEGG: nhl:Nhal_2895 NADH/ubiquinone/plastoquinone (complex I). (522 aa)
AEJ01432.1KEGG: nhl:Nhal_2897 proton-translocating NADH-quinone oxidoreductase, chain M; TIGRFAM: NADH-quinone oxidoreductase, chain M; PFAM: NADH:ubiquinone/plastoquinone oxidoreductase. (490 aa)
nuoNNAD(P)H-quinone oxidoreductase subunit 2; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (481 aa)
AEJ02672.1KEGG: nit:NAL212_2729 proton-translocating NADH-quinone oxidoreductase, chain M; TIGRFAM: NADH-quinone oxidoreductase, chain M; PFAM: NADH:ubiquinone/plastoquinone oxidoreductase. (494 aa)
AEJ02673.1KEGG: nit:NAL212_2730 proton-translocating NADH-quinone oxidoreductase, chain L; TIGRFAM: NADH-plastoquinone oxidoreductase, chain 5; PFAM: NADH:ubiquinone/plastoquinone oxidoreductase; NADH:ubiquinone oxidoreductase, chain 5/L, N-terminal. (646 aa)
nuoKNAD(P)H-quinone oxidoreductase subunit 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (101 aa)
AEJ02675.1NADH-ubiquinone/plastoquinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (201 aa)
nuoINAD(P)H-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (162 aa)
AEJ02678.1NADH-quinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (803 aa)
AEJ02679.1NADH-quinone oxidoreductase, F subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (425 aa)
nuoDNAD(P)H-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (417 aa)
nuoCNAD(P)H-quinone oxidoreductase subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (206 aa)
nuoBNAD(P)H-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (158 aa)
nuoANAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (118 aa)
Your Current Organism:
Nitrosomonas sp. Is79A3
NCBI taxonomy Id: 261292
Other names: N. sp. Is79A3
Server load: low (16%) [HD]