Your Input: | |||||
dnaN | Beta subunit of DNA polymerase III; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation [...] (378 aa) | ||||
guaB | Inosine monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (493 aa) | ||||
holB | DNA polymerase III delta prime subunit; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity. Belongs to the helicase family. DnaB subfamily. (453 aa) | ||||
purA | Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (218 aa) | ||||
rpoA | DNA-directed RNA polymerase alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (312 aa) | ||||
rpoB | DNA-directed RNA polymerase beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1193 aa) | ||||
rpoC | DNA-directed RNA polymerase B prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1212 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (406 aa) | ||||
dut | Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase); This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA. (148 aa) | ||||
tgt | Queuine tRNA-ribosyltransferase (tRNA-guanine transglycosylase); Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on [...] (380 aa) | ||||
stu1796 | Conserved hypothetical protein. (210 aa) | ||||
stu1773 | Conserved hypothetical protein; Belongs to the UPF0356 family. (76 aa) | ||||
polA | DNA-directed DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. (879 aa) | ||||
nusB | Transcriptional termination factor; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (144 aa) | ||||
aroG2 | Phospho-2-dehydro-3-deoxyheptonate aldolase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (343 aa) | ||||
aroG1 | Phospho-2-dehydro-3-deoxyheptonate aldolase(DAHP synthatase); Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (343 aa) | ||||
stu1659 | Hypothetical protein. (161 aa) | ||||
dinP | DNA polymerase IV, damage-inducible; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (367 aa) | ||||
kdtB | Phosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (165 aa) | ||||
nadD | Conserved hypothetical protein; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (210 aa) | ||||
trpE | Anthranilate synthase component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentr [...] (456 aa) | ||||
trpD | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (334 aa) | ||||
trpC | Indole-3-glycerol phosphate synthase; Belongs to the TrpC family. (255 aa) | ||||
trpF | N-(5'-phosphoribosyl)-anthranilate isomerase; Belongs to the TrpF family. (203 aa) | ||||
trpB | Tryptophan synthase, beta subunit; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (402 aa) | ||||
trpA | Tryptophan synthase, alpha subunit; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (260 aa) | ||||
murZ | UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (423 aa) | ||||
folC2 | Folylpolyglutamate synthase / dihydrofolate synthase; Belongs to the folylpolyglutamate synthase family. (420 aa) | ||||
folE | GTP cyclohydrolase I. (187 aa) | ||||
folP | Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives. (266 aa) | ||||
folQ | Dihydroneopterin aldolase; Catalyzes the conversion of 7,8-dihydroneopterin to 6- hydroxymethyl-7,8-dihydropterin. (119 aa) | ||||
folK | Hydroxymethylpterin pyrophosphokinase. (163 aa) | ||||
serC | Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. (364 aa) | ||||
dnaG | DNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication. (603 aa) | ||||
rpoD | DNA directed RNA polymerase sigma 42 protein; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (369 aa) | ||||
rmlD | dTDP-4-keto-L-rhamnose reductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose. (290 aa) | ||||
prsA2 | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (337 aa) | ||||
stu1459 | GTP pyrophosphokinase, putative. (241 aa) | ||||
ppnK | ATP-NAD kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (279 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (209 aa) | ||||
rpoZ | DNA-directed RNA polymerase, omega subunit, putative; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (104 aa) | ||||
priA | Primosomal replication factor Y; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (798 aa) | ||||
umuC1 | SOS responce UmuC protein; Belongs to the DNA polymerase type-Y family. (471 aa) | ||||
pdxK | Pyridoxal/pyridoxine/pyridoxamine kinase; Belongs to the pyridoxine kinase family. (273 aa) | ||||
nrdF | Ribonucleotide diphosphate reductase beta subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides; Belongs to the ribonucleoside diphosphate reductase small chain family. (320 aa) | ||||
udk | Uridine kinase. (211 aa) | ||||
cobQ | Cobyric acid synthase. (262 aa) | ||||
dacA | Conserved hypothetical protein; Catalyzes the condensation of 2 ATP molecules into cyclic di- AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria. (285 aa) | ||||
hemN | Coproporphyrinogen III oxidase; Probably acts as a heme chaperone, transferring heme to an unknown acceptor. Binds one molecule of heme per monomer, possibly covalently. Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine. Belongs to the anaerobic coproporphyrinogen-III oxidase family. (378 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (172 aa) | ||||
pyrDa | Dihydroorotate dehydrogenase A; Catalyzes the conversion of dihydroorotate to orotate. (327 aa) | ||||
dnaE | DNA polymeraDNA polymerase III alphase III alpha subunit. (1036 aa) | ||||
dnaX | DNA polymerase III subunits gamma / tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (550 aa) | ||||
murA | UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (428 aa) | ||||
stu1148 | Conserved hypothetical protein. (372 aa) | ||||
cmk | Cytidylate kinase. (226 aa) | ||||
pyrC | Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate; Belongs to the metallo-dependent hydrolases superfamily. DHOase family. Class I DHOase subfamily. (422 aa) | ||||
ribC | Riboflavin kinase / FMN adenylyltransferase; Belongs to the ribF family. (303 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (209 aa) | ||||
pyrF | orotidine-5-Phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (231 aa) | ||||
pyrDb | Dihydroorotate dehydrogenase B; Catalyzes the conversion of dihydroorotate to orotate. (315 aa) | ||||
pyrK | Dihydroorotate dehydrogenase, electron transfer subunit; Responsible for channeling the electrons from the oxidation of dihydroorotate from the FMN redox center in the PyrD type B subunit to the ultimate electron acceptor NAD(+). (267 aa) | ||||
ndk | Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (142 aa) | ||||
guaA | GMP synthase; Catalyzes the synthesis of GMP from XMP. (527 aa) | ||||
queF | Conserved hypothetical protein; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1). Belongs to the GTP cyclohydrolase I family. QueF type 1 subfamily. (178 aa) | ||||
queE | Hypothetical protein, coenzyme PQQ synthesis homologue; Catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7- deazaguanine (CDG), a step common to the biosynthetic pathways of all 7-deazapurine-containing compounds. (238 aa) | ||||
ptpS | 6-pyruvoyl tetrahydrobiopterin synthase, putative. (147 aa) | ||||
queC | Conserved hypothetical protein; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). (217 aa) | ||||
coaA | Pantothenate kinase. (306 aa) | ||||
dfp2 | Flavoprotein involved in panthothenate metabolism, putative. (227 aa) | ||||
pabB | Para-aminobenzoate synthetase component I. (572 aa) | ||||
tdk | Thymidine kinase. (198 aa) | ||||
add | Adenosine deaminase; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. Adenosine deaminase subfamily. (336 aa) | ||||
holA | DNA polymerase III delta subunit. (344 aa) | ||||
pheA | Prephenate dehydratase. (274 aa) | ||||
aroK | Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (163 aa) | ||||
aroA | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (427 aa) | ||||
tyrA | Prephenate dehydrogenase. (368 aa) | ||||
aroF | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (388 aa) | ||||
aroB | 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. (355 aa) | ||||
aroE | Shikimate 5-dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (298 aa) | ||||
aroD | 3-dehydroquinate dehydratase; Involved in the third step of the chorismate pathway, which leads to the biosynthesis of aromatic amino acids. Catalyzes the cis- dehydration of 3-dehydroquinate (DHQ) and introduces the first double bond of the aromatic ring to yield 3-dehydroshikimate. Belongs to the type-I 3-dehydroquinase family. (225 aa) | ||||
coaE | dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (204 aa) | ||||
folD | Methylenetetrahydrofolate dehydrogenase / methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (288 aa) | ||||
folA | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. (167 aa) | ||||
thyA | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (286 aa) | ||||
gcaD | UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family. (460 aa) | ||||
queA | S-adenosylmethionine-tRNA ribosyltransferase-isomerase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). (347 aa) | ||||
carB | Carbamoyl phosphate synthetase, large chain. (1059 aa) | ||||
carA | Carbamoyl phosphate synthetase, small chain; Belongs to the CarA family. (362 aa) | ||||
pyrB | Aspartate transcarbamoylase; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (308 aa) | ||||
pyrR | Pyrimidine regulatory protein; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (201 aa) | ||||
tmk | Thymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (209 aa) | ||||
atpC | H+-translocating ATPase epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (148 aa) | ||||
atpD | H+-translocating ATPase beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (468 aa) | ||||
atpG | H+-translocating ATPase gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (292 aa) | ||||
atpA | H+-translocating ATPase alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (501 aa) | ||||
atpH | H+-translocating ATPase delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (178 aa) | ||||
atpF | H+-translocating ATPase b subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (165 aa) | ||||
atpB | H+-translocating ATPase a subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (235 aa) | ||||
atpE | Proton-translocating ATPase, c subunit. (65 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (245 aa) | ||||
nadR | Transcriptional regulator. (368 aa) | ||||
thiI | Thiamine biosynthesis protein; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (407 aa) | ||||
folC1 | Folylpolyglutamate synthase / dihydrofolate synthase; Belongs to the folylpolyglutamate synthase family. (418 aa) | ||||
accA | acetyl-CoA carboxylase carboxyl transferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (256 aa) | ||||
accD | Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (288 aa) | ||||
accC | Biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (461 aa) | ||||
upp | Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (209 aa) | ||||
nusA | Transcription termination-antitermination factor; Participates in both transcription termination and antitermination. (395 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (446 aa) | ||||
nadE | NH(3)-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source. (273 aa) | ||||
pncB | Nicotinate phosphoribosyltransferase, putative; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (511 aa) | ||||
nusG | Transcription antitermination factor; Participates in transcription elongation, termination and antitermination. (179 aa) | ||||
relA | (p)ppGpp synthetase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (739 aa) | ||||
pyrG | CTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (534 aa) | ||||
rpoE | DNA-directed RNA polymerase delta subunit; Participates in both the initiation and recycling phases of transcription. In the presence of the delta subunit, RNAP displays an increased specificity of transcription, a decreased affinity for nucleic acids, and an increased efficiency of RNA synthesis because of enhanced recycling; Belongs to the RpoE family. (193 aa) | ||||
comX | Transcriptional regulator, competence factor,RNA polymerase sigma factor; Belongs to the sigma-70 factor family. (165 aa) | ||||
thiD | Phosphomethylpyrimidine kinase. (253 aa) | ||||
polC | DNA polymerase III alpha subunit; Required for replicative DNA synthesis. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (1464 aa) | ||||
purB | Adenylosuccinate lyase; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (432 aa) | ||||
purK | Phosphoribosylaminoimidazole carboxylase II (AIR carboxylase); Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (363 aa) | ||||
purE | Phosphoribosylaminoimidazole carboxylase I (AIR carboxylase, catalytic subunit); Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (166 aa) | ||||
purD | Phosphoribosylamine-glycine ligase (GAR synthetase); Belongs to the GARS family. (420 aa) | ||||
purH | Phosphoribosylaminoimidazolecarboxamide formyltransferase (IMP cyclohydrolase). (532 aa) | ||||
purN | Phosphoribosylglycinamide (GAR) formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (184 aa) | ||||
purM | Phosphoribosylformylglycinamide cyclo-ligase (AIR synthetase). (339 aa) | ||||
purF | Amidophosphoribosyltransferase (PRPP amidotransferase); Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (479 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase II (FGAM synthetase). (1249 aa) | ||||
purC | Phosphoribosylaminoimidazole - succinocarboxamide synthase (SAICAR synthetase). (235 aa) | ||||
prsA1 | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (325 aa) | ||||
hpt | Hypoxantine-guanine phosphorybosyltransferase. (180 aa) |