STRINGSTRING
egsA egsA tatA-2 tatA-2 tatA tatA tatC-2 tatC-2 tatC tatC srp19 srp19 srp54 srp54 secD secD ftsZ-2 ftsZ-2 ftsY ftsY ftsZ ftsZ
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
egsAGlycerol dehydrogenase; Catalyzes the NAD(P)H-dependent reduction of dihydroxyacetonephosphate (DHAP or glycerone phosphate) to glycerol 1- phosphate (G1P). The G1P thus generated is used as the glycerophosphate backbone of phospholipids in the cellular membranes of Archaea. Belongs to the glycerol-1-phosphate dehydrogenase family. (356 aa)
tatA-2Sec-independent protein translocase TatA; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system. (101 aa)
tatASec-independent protein translocase, protein; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system. (130 aa)
tatC-2Sec-independent protein translocase, protein; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. (260 aa)
tatCSec-independent protein translocase, protein; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. (260 aa)
srp19Signal recognition particle, subunit SRP19 (srp19); Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds directly to 7S RNA and mediates binding of the 54 kDa subunit of the SRP. (103 aa)
srp54Signal recognition particle subunit FFH/SRP54 (srp54); Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (443 aa)
secDProtein translocase subunit SecD; Involved in protein export. (566 aa)
ftsZ-2Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (375 aa)
ftsYSignal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (422 aa)
ftsZCell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (392 aa)
Your Current Organism:
Methanosarcina barkeri Fusaro
NCBI taxonomy Id: 269797
Other names: M. barkeri str. Fusaro, Methanosarcina barkeri DSM 804, Methanosarcina barkeri str. Fusaro, Methanosarcina barkeri strain Fusaro
Server load: low (18%) [HD]