Your Input: | |||||
gyrB | DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (804 aa) | ||||
recF | Recombination protein F; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP. (357 aa) | ||||
dnaA | Chromosomal replication initiation protein; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box): 5'- TTATC[CA]A[CA]A-3'. DnaA binds to ATP and to acidic phospholipids. Belongs to the DnaA family. (444 aa) | ||||
yidC | Inner membrane protein translocase component YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (548 aa) | ||||
yihA | GTP-binding protein; Necessary for normal cell division and for the maintenance of normal septation; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. EngB GTPase family. (210 aa) | ||||
bipA | GTP-binding elongation factor family protein. (607 aa) | ||||
rhlB | ATP-dependent RNA helicase; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (421 aa) | ||||
hflX | GTP - binding subunit of protease specific for phage lambda cII repressor; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. HflX GTPase family. (426 aa) | ||||
hflK | Protease specific for phage lambda cII repressor; HflC and HflK could encode or regulate a protease. (420 aa) | ||||
hflC | Protease specific for phage lambda cII repressor; HflC and HflK could regulate a protease. (334 aa) | ||||
rnr | RNase R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. Belongs to the RNR ribonuclease family. RNase R subfamily. (810 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (529 aa) | ||||
ibpA | Heat shock protein; Associates with aggregated proteins, together with IbpB, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. (152 aa) | ||||
ftsY | Cell division membrane protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components. (507 aa) | ||||
rpoH | RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. (284 aa) | ||||
glgX | Glycogen debranching enzyme; Removes maltotriose and maltotetraose chains that are attached by 1,6-alpha-linkage to the limit dextrin main chain, generating a debranched limit dextrin. (658 aa) | ||||
glgP | Glycogen phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. (815 aa) | ||||
yheS | Putative ATP-binding component of a transport system. (634 aa) | ||||
tuf | Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa) | ||||
mreB | Regulator of ftsI, penicillin binding protein 3, septation function. (347 aa) | ||||
yhbJ | Hypothetical protein; Modulates the synthesis of GlmS, by affecting the processing and stability of the regulatory small RNA GlmZ. When glucosamine-6- phosphate (GlcN6P) concentrations are high in the cell, RapZ binds GlmZ and targets it to cleavage by RNase E. Consequently, GlmZ is inactivated and unable to activate GlmS synthesis. Under low GlcN6P concentrations, RapZ is sequestered and inactivated by an other regulatory small RNA, GlmY, preventing GlmZ degradation and leading to synthesis of GlmS; Belongs to the RapZ-like family. RapZ subfamily. (284 aa) | ||||
rpoN | DNA-directed RNA polymerase subunit N; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (463 aa) | ||||
hflB | ATP-dependent zinc-metallo protease; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. (644 aa) | ||||
parE | DNA topoisomerase IV subunit B; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase family. ParE type 1 subfamily. (631 aa) | ||||
parC | DNA topoisomerase IV subunit A; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. (752 aa) | ||||
grpE | Hsp 24 nucleotide exchange factor; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several roun [...] (196 aa) | ||||
ffh | 4.5S-RNP protein, GTP-binding export factor; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual [...] (454 aa) | ||||
clpB | ATP-dependent protease, Hsp 100; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. (857 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (599 aa) | ||||
yfgK | GTP-binding protein EngA; GTPase that plays an essential role in the late steps of ribosome biogenesis; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. EngA (Der) GTPase family. (492 aa) | ||||
gyrA | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (877 aa) | ||||
rcsA | Positive regulator for ctr capsule biosynthesis, positive transcription factor; Component of the Rcs signaling system, which controls transcription of numerous genes. Binds to DNA to regulate expression of genes. (207 aa) | ||||
ruvB | Holliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (336 aa) | ||||
lacI | Transcriptional repressor of lactose catabolism (GalR/LacI family). (354 aa) | ||||
hrpA | Helicase, ATP-dependent. (1300 aa) | ||||
ycbG | Hypothetical protein; Required for spatial organization of the terminus region of the chromosome (Ter macrodomain) during the cell cycle. Prevents early segregation of duplicated Ter macrodomains during cell division. Binds specifically to matS, which is a 13 bp signature motif repeated within the Ter macrodomain. (150 aa) | ||||
uup | Putative ATP-binding component of a transport system. (635 aa) | ||||
clpA | ATP-binding component of serine protease; Belongs to the ClpA/ClpB family. (759 aa) | ||||
ybiT | Putative ATP-binding component of a transport system. (522 aa) | ||||
rhlE | Putative ATP-dependent RNA helicase; DEAD-box RNA helicase involved in ribosome assembly. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. (451 aa) | ||||
seqA | Negative modulator of initiation of replication; Negative regulator of replication initiation, which contributes to regulation of DNA replication and ensures that replication initiation occurs exactly once per chromosome per cell cycle. Binds to pairs of hemimethylated GATC sequences in the oriC region, thus preventing assembly of replication proteins and re- initiation at newly replicated origins. Repression is relieved when the region becomes fully methylated. (182 aa) | ||||
ybeY | Hypothetical protein; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. (157 aa) | ||||
htpG | Heat shock protein 90; Molecular chaperone. Has ATPase activity. (624 aa) | ||||
clpP | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (194 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (432 aa) | ||||
secA | Translocase; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. (901 aa) | ||||
ftsA | Cell division protein; Cell division protein that is involved in the assembly of the Z ring. May serve as a membrane anchor for the Z ring. Belongs to the FtsA/MreB family. (420 aa) | ||||
dnaJ | Chaperone with DnaK; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK [...] (377 aa) | ||||
dnaK | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. (638 aa) |