Your Input: | |||||
groES | Co-chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. (97 aa) | ||||
hfq | RNA-binding protein Hfq; RNA chaperone that binds small regulatory RNA (sRNAs) and mRNAs to facilitate mRNA translational regulation in response to envelope stress, environmental stress and changes in metabolite concentrations. Also binds with high specificity to tRNAs. Belongs to the Hfq family. (102 aa) | ||||
dnaB | Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins. Belongs to the helicase family. DnaB subfamily. (471 aa) | ||||
argC | N-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (334 aa) | ||||
hslV | ATP-dependent protease peptidase subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. (176 aa) | ||||
hslU | ATP-dependent protease ATP-binding subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. (444 aa) | ||||
rpoH | RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. (284 aa) | ||||
mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa) | ||||
rpoS | RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. (330 aa) | ||||
recA | Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (352 aa) | ||||
fim-2 | Putative fimbrial-like protein. (364 aa) | ||||
grpE | Hsp 24 nucleotide exchange factor; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several roun [...] (196 aa) | ||||
clpB | ATP-dependent protease, Hsp 100; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. (857 aa) | ||||
iscR | Fe-S cluster-containing transcription factor; Regulates the transcription of several operons and genes involved in the biogenesis of Fe-S clusters and Fe-S-containing proteins. (163 aa) | ||||
iscS | Cysteine desulfurase; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur atoms from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. NifS/IscS subfamily. (404 aa) | ||||
hscB | Co-chaperone HscB; Co-chaperone involved in the maturation of iron-sulfur cluster-containing proteins. Seems to help targeting proteins to be folded toward HscA; Belongs to the HscB family. (171 aa) | ||||
ndk | Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (143 aa) | ||||
nuoF | NADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (445 aa) | ||||
nuoH | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa) | ||||
nuoL | NADH dehydrogenase subunit L. (613 aa) | ||||
nuoM | NADH dehydrogenase subunit M. (509 aa) | ||||
nuoN | NADH dehydrogenase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (485 aa) | ||||
nrdA | Ribonucleotide-diphosphate reductase alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. (761 aa) | ||||
slyA | Transcriptional regulator SlyA; Transcription regulator that can specifically activate or repress expression of target genes; Belongs to the SlyA family. (146 aa) | ||||
phoP | Response regulator in two-component regulatory system with PhoQ, regulates gene expression at low. (223 aa) | ||||
sdhC | Hypothetical protein. (91 aa) | ||||
gltA | Citrate synthase; Belongs to the citrate synthase family. (427 aa) | ||||
KPN_00489 | Putative citrate synthase; Belongs to the citrate synthase family. (434 aa) | ||||
htpG | Heat shock protein 90; Molecular chaperone. Has ATPase activity. (624 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (241 aa) | ||||
dksA | dnaK suppressor protein; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression. (151 aa) | ||||
acnB | Aconitate hydratase; Belongs to the aconitase/IPM isomerase family. (851 aa) | ||||
ftsZ | Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (383 aa) | ||||
ftsA | Cell division protein; Cell division protein that is involved in the assembly of the Z ring. May serve as a membrane anchor for the Z ring. Belongs to the FtsA/MreB family. (420 aa) | ||||
ftsQ | Cell division protein; Essential cell division protein. May link together the upstream cell division proteins, which are predominantly cytoplasmic, with the downstream cell division proteins, which are predominantly periplasmic. May control correct divisome assembly. (276 aa) | ||||
murC | UDP-N-acetylmuramate--L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (491 aa) | ||||
murG | N-acetylglucosaminyl transferase; Cell wall formation. Catalyzes the transfer of a GlcNAc subunit on undecaprenyl-pyrophosphoryl-MurNAc-pentapeptide (lipid intermediate I) to form undecaprenyl-pyrophosphoryl-MurNAc- (pentapeptide)GlcNAc (lipid intermediate II); Belongs to the glycosyltransferase 28 family. MurG subfamily. (356 aa) | ||||
ftsW | Cell division; Peptidoglycan polymerase that is essential for cell division. Belongs to the SEDS family. FtsW subfamily. (424 aa) | ||||
murD | UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). Belongs to the MurCDEF family. (438 aa) | ||||
dnaJ | Chaperone with DnaK; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK [...] (377 aa) | ||||
dnaK | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. (638 aa) |