STRINGSTRING
grpE grpE djlA djlA lspA lspA dnaK dnaK lolA lolA lnt lnt degP degP secA secA lolB lolB prlA prlA yidC yidC dsbA dsbA trxA trxA tatB tatB groES groES
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
grpEHsp 24 nucleotide exchange factor; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several roun [...] (196 aa)
djlADna-J like membrane chaperone protein; Regulatory DnaK co-chaperone. Direct interaction between DnaK and DjlA is needed for the induction of the wcaABCDE operon, involved in the synthesis of a colanic acid polysaccharide capsule, possibly through activation of the RcsB/RcsC phosphotransfer signaling pathway. The colanic acid capsule may help the bacterium survive conditions outside the host. (275 aa)
lspASignal peptidase II; This protein specifically catalyzes the removal of signal peptides from prolipoproteins; Belongs to the peptidase A8 family. (166 aa)
dnaKMolecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. (638 aa)
lolAOuter-membrane lipoprotein carrier protein precursor; Participates in the translocation of lipoproteins from the inner membrane to the outer membrane. Only forms a complex with a lipoprotein if the residue after the N-terminal Cys is not an aspartate (The Asp acts as a targeting signal to indicate that the lipoprotein should stay in the inner membrane). (203 aa)
lntApolipoprotein N-acyltransferase; Catalyzes the phospholipid dependent N-acylation of the N- terminal cysteine of apolipoprotein, the last step in lipoprotein maturation; Belongs to the CN hydrolase family. Apolipoprotein N- acyltransferase subfamily. (512 aa)
degPPeriplasmic serine protease Do, heat shock protein; Belongs to the peptidase S1C family. (477 aa)
secATranslocase; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. (901 aa)
lolBOuter membrane lipoprotein LolB precursor; Plays a critical role in the incorporation of lipoproteins in the outer membrane after they are released by the LolA protein. (203 aa)
prlAPreprotein translocase SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (443 aa)
yidCInner membrane protein translocase component YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (548 aa)
dsbAPeriplasmic protein disulfide isomerase I. (207 aa)
trxAThioredoxin; Belongs to the thioredoxin family. (109 aa)
tatBSec-independent translocase; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatC, TatB is part of a receptor directly interacting with Tat signal peptides. TatB may form an oligomeric binding site that transiently accommodates folded Tat precursor proteins before their translocation. (178 aa)
groESCo-chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. (97 aa)
Your Current Organism:
Klebsiella pneumoniae MGH78578
NCBI taxonomy Id: 272620
Other names: K. pneumoniae subsp. pneumoniae MGH 78578, Klebsiella pneumoniae MCG 78578, Klebsiella pneumoniae str. MCG 78578, Klebsiella pneumoniae subsp. pneumoniae ATCC 700721, Klebsiella pneumoniae subsp. pneumoniae MGH 78578, Klebsiella pneumoniae subsp. pneumoniae str. MGH 78578, Klebsiella pneumoniae subsp. pneumoniae strain MGH 78578
Server load: low (34%) [HD]