Your Input: | |||||
rplM | 50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (146 aa) | ||||
rpoD | RNA polymerase sigma factor RpoD; Belongs to the sigma-70 factor family. (445 aa) | ||||
era | Putative GTP-binding protein; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (297 aa) | ||||
rpsI | 30S ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (133 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (182 aa) | ||||
ffh | Signal recognition particle; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (452 aa) | ||||
rny | Hypothetical protein; Endoribonuclease that initiates mRNA decay. Belongs to the RNase Y family. (509 aa) | ||||
engB | GTP-binding protein YsxC; Necessary for normal cell division and for the maintenance of normal septation; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. EngB GTPase family. (199 aa) | ||||
spoU | rRNA methylase; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (282 aa) | ||||
argS | arginyl-tRNA synthetase. (557 aa) | ||||
hit | Histidine triad protein. (138 aa) | ||||
def | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (193 aa) | ||||
ALA97978.1 | Peptide deformylase. (102 aa) | ||||
rnj | Metallo-beta-lactamase family protein; An RNase that has 5'-3' exonuclease and possibly endonuclease activity. Involved in maturation of rRNA and in some organisms also mRNA maturation and/or decay. (586 aa) | ||||
alaS | alanyl-tRNA synthetase. (94 aa) | ||||
ALA98001.1 | Antibiotic transport system ATP-binding protein. (301 aa) | ||||
groES | 10 kDa chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter; Belongs to the GroES chaperonin family. (90 aa) | ||||
groL | Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (537 aa) | ||||
obgE | GTPase CgtA; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (434 aa) | ||||
ALA98075.1 | DEAD-box ATP-dependent RNA helicase; Belongs to the DEAD box helicase family. (444 aa) | ||||
rplK | 50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (144 aa) | ||||
rplA | 50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (228 aa) | ||||
relA | GTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (749 aa) | ||||
secDF | Bifunctional preprotein translocase subunit SecD/SecF. (1058 aa) | ||||
ALA98144.1 | Spiroplasmavirus-related protein. (359 aa) | ||||
ALA98146.1 | DEAD/DEAH family helicase. (911 aa) | ||||
ALA98158.1 | DJ-1 family protein. (183 aa) | ||||
ALA98161.1 | Hypothetical protein. (125 aa) | ||||
lonA | Class III heat-shock ATP-dependent LonA; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. (772 aa) | ||||
secA | Preprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. (796 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (431 aa) | ||||
ppa | Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (187 aa) | ||||
ALA97060.1 | Hypothetical protein. (118 aa) | ||||
rnc | Ribonuclease III; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (249 aa) | ||||
ALA97062.1 | ABC transporter ATP-binding protein. (63 aa) | ||||
pnpT | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (701 aa) | ||||
ALA98249.1 | Hypothetical protein. (108 aa) | ||||
dnaJ | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (378 aa) | ||||
dnaK | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. (590 aa) | ||||
grpE | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] (207 aa) | ||||
hrcA | Heat-inducible transcription repressor; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. (348 aa) | ||||
clpB | ATP-dependent protease ATP-binding subunit ClpB; Belongs to the ClpA/ClpB family. (713 aa) | ||||
ALA97063.1 | ABC transporter ATP-binding protein. (56 aa) | ||||
ALA97064.1 | ABC transporter ATP-binding protein. (112 aa) | ||||
tyrS | tyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (420 aa) | ||||
ALA98313.1 | Acyl carrier protein. (74 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). (474 aa) | ||||
rpsT | 30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (83 aa) | ||||
ftsY | Cell division protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (328 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (143 aa) | ||||
rnr | Putative ribonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. (705 aa) | ||||
secG | Preprotein translocase subunit SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (98 aa) | ||||
ALA98443.1 | Cof-like hydrolase. (109 aa) | ||||
ALA98444.1 | Cof-like hydrolase. (80 aa) | ||||
ALA98445.1 | Putative HAD superfamily hydrolase. (276 aa) | ||||
atpC | F0F1 ATP synthase subunit epsilon. (87 aa) | ||||
atpD | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (465 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (285 aa) | ||||
atpA | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (523 aa) | ||||
atpH | F0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (181 aa) | ||||
atpF | F0F1 ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (178 aa) | ||||
atpE | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (100 aa) | ||||
atpB | F0F1 ATP synthase subunit A. (266 aa) | ||||
ALA98454.1 | Hypothetical protein. (147 aa) | ||||
ALA98456.1 | Hypothetical protein. (65 aa) | ||||
ALA98459.1 | Uncharacterized protein associated with RNAses G and E. (185 aa) | ||||
tufA | Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa) | ||||
efg | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (692 aa) | ||||
rpsG | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (155 aa) | ||||
rpsL | 30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (140 aa) | ||||
rpoC | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1250 aa) | ||||
rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1302 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (358 aa) | ||||
rpmE | 50S ribosomal protein L31; Binds the 23S rRNA; Belongs to the bacterial ribosomal protein bL31 family. Type A subfamily. (101 aa) | ||||
nox | NADH oxidase. (200 aa) | ||||
rpsR | 30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (74 aa) | ||||
rpsF | 30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (149 aa) | ||||
karS | lysyl-tRNA synthetase; Belongs to the class-II aminoacyl-tRNA synthetase family. (504 aa) | ||||
yidC | Inner membrane protein translocase component YidC. (380 aa) | ||||
rnpA | Ribonuclease P; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. (105 aa) | ||||
marS | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (526 aa) | ||||
gidA | tRNA uridine 5-carboxymethylaminomethyl modification protein GidA; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family. (626 aa) | ||||
cysS | cysteinyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (445 aa) | ||||
ALA97102.1 | tRNA/rRNA methyltransferase; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (244 aa) | ||||
ALA97103.1 | Hypothetical protein; Belongs to the SecE/SEC61-gamma family. (145 aa) | ||||
nusG | Transcription antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (217 aa) | ||||
gidB | 16S rRNA methyltransferase GidB; Specifically methylates the N7 position of a guanine in 16S rRNA; Belongs to the methyltransferase superfamily. RNA methyltransferase RsmG family. (232 aa) | ||||
earS | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (482 aa) | ||||
topA | DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] (664 aa) | ||||
ALA97146.1 | Metallo-beta-lactamase superfamily hydrolase. (555 aa) | ||||
truA | tRNA pseudouridine synthase A; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs. (260 aa) | ||||
rplI | 50S ribosomal protein L9; Binds to the 23S rRNA. (149 aa) | ||||
rpsJ | 30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (110 aa) | ||||
rplC | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (258 aa) | ||||
rplD | 50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (208 aa) | ||||
rplW | 50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (95 aa) | ||||
rplB | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (278 aa) | ||||
rpsS | 30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (91 aa) | ||||
rplV | 50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (112 aa) | ||||
rpsC | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (252 aa) | ||||
rplP | 50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (137 aa) | ||||
rpmC | 50S ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (336 aa) | ||||
rpsQ | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (85 aa) | ||||
rplN | 50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rplX | 50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (106 aa) | ||||
rplE | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (180 aa) | ||||
ALA97176.1 | 30S ribosomal protein S14. (62 aa) | ||||
rpsH | 30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (128 aa) | ||||
rplF | 50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (179 aa) | ||||
rplR | 50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (121 aa) | ||||
rpsE | 30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (204 aa) | ||||
rplO | 50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (145 aa) | ||||
secY | Preprotein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (475 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
rpsM | 30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (121 aa) | ||||
rpsK | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa) | ||||
rpoA | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (317 aa) | ||||
rplQ | 50S ribosomal protein L17. (119 aa) | ||||
map | Methionine aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (247 aa) | ||||
narS | asparaginyl-tRNA synthetase. (455 aa) | ||||
rpsP | 30S ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (119 aa) | ||||
ALA97210.1 | RNA-binding protein. (83 aa) | ||||
ALA97211.1 | 16S rRNA processing protein; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes. (163 aa) | ||||
trmD | tRNA (guanine-N(1)-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (267 aa) | ||||
rplS | 50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (118 aa) | ||||
ALA97214.1 | Ribosome biogenesis GTPase. (127 aa) | ||||
ALA97215.1 | Putative GTPase; Required for a late step of 50S ribosomal subunit assembly. Has GTPase activity; Belongs to the TRAFAC class YlqF/YawG GTPase family. MTG1 subfamily. (296 aa) | ||||
nox-2 | NADH oxidase. (452 aa) | ||||
trxA | Thioredoxin; Belongs to the thioredoxin family. (103 aa) | ||||
leuS | leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (805 aa) | ||||
rimP | Ribosome maturation factor RimP; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (160 aa) | ||||
nusA | Transcription elongation factor NusA; Participates in both transcription termination and antitermination. (471 aa) | ||||
ylxR | RNA-binding protein. (91 aa) | ||||
ALA97287.1 | 50S ribosomal protein L7Ae. (103 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (617 aa) | ||||
rpmB | 50S ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (65 aa) | ||||
rpsD | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (204 aa) | ||||
warS | tryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (340 aa) | ||||
ALA97355.1 | ABC-type transport system permease and ATP-binding protein. (635 aa) | ||||
ALA97378.1 | Hydrolase. (217 aa) | ||||
rluC | Ribosomal large subunit pseudouridine synthase C. (202 aa) | ||||
ycgT | Thioredoxin reductase. (328 aa) | ||||
ALA97459.1 | ATP-dependent RNA helicase. (458 aa) | ||||
rplU | 50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (173 aa) | ||||
rpmA | 50S ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (97 aa) | ||||
trmE | tRNA modification GTPase TrmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. TrmE GTPase family. (449 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (600 aa) | ||||
pheS | phenylalanyl-tRNA synthetase subunit alpha; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (345 aa) | ||||
pheT | phenylalanyl-tRNA synthetase subunit beta; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (798 aa) | ||||
rpmF | 50S ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (58 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (908 aa) | ||||
acpS | Holo-acyl-carrier-protein synthase; Transfers the 4'-phosphopantetheine moiety from coenzyme A to a Ser of acyl-carrier-protein; Belongs to the P-Pant transferase superfamily. AcpS family. (113 aa) | ||||
rpsB | 30S ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (365 aa) | ||||
rsmA | Putative dimethyladenosine transferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (282 aa) | ||||
tsf | Elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (296 aa) | ||||
thrS | threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (640 aa) | ||||
infC | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (176 aa) | ||||
rpmI | 50S ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (64 aa) | ||||
rplT | 50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (119 aa) | ||||
polA | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. (869 aa) | ||||
ybeY | Hypothetical protein; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. (158 aa) | ||||
rbfA | Ribosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (112 aa) | ||||
rpsO | 30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (88 aa) | ||||
harS | histidyl-tRNA synthetase. (418 aa) | ||||
darS | aspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (577 aa) | ||||
phrB | Deoxyribodipyrimidine photolyase; Belongs to the DNA photolyase family. (431 aa) | ||||
efp | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (185 aa) | ||||
ALA97731.1 | ABC-type transport system ATP-binding protein. (325 aa) | ||||
ALA97732.1 | Hypothetical protein. (567 aa) | ||||
ALA97733.1 | Hypothetical protein. (97 aa) | ||||
rplJ | 50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (163 aa) | ||||
rplL | 50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (121 aa) | ||||
ALA97821.1 | Hypothetical protein. (157 aa) | ||||
greA | Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (156 aa) | ||||
ALA97883.1 | ABC-type multidrug transport system ATP-binding protein. (171 aa) |