STRINGSTRING
gluQ gluQ proC proC guaB guaB APT86185.1 APT86185.1 guaA guaA folD folD purK purK purE purE APT86380.1 APT86380.1 APT86428.1 APT86428.1 thyA thyA purN purN purH purH APT86518.1 APT86518.1 glyA glyA putP putP gltX gltX fhs fhs gmk gmk apt apt thyX thyX APT87133.1 APT87133.1 gcvP gcvP gcvT gcvT gcvH gcvH glnA glnA glnA-2 glnA-2 gltB gltB gltD gltD APT87250.1 APT87250.1 proA proA proB proB purM purM purF purF purQ purQ purS purS purC purC APT87593.1 APT87593.1 purD purD APT87640.1 APT87640.1 purA purA APT87720.1 APT87720.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gluQglutamyl-tRNA synthetase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon; Belongs to the class-I aminoacyl-tRNA synthetase family. GluQ subfamily. (306 aa)
proCPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (263 aa)
guaBInosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (506 aa)
APT86185.1Oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (380 aa)
guaAGMP synthase; Catalyzes the synthesis of GMP from XMP. (522 aa)
folDMethenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (282 aa)
purKPhosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (376 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (166 aa)
APT86380.1Glutamine amidotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (243 aa)
APT86428.1Diacylglycerol kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the dihydrofolate reductase family. (176 aa)
thyAThymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (265 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (206 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (511 aa)
APT86518.1Nucleoside triphosphate hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (203 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (433 aa)
putPProline:sodium symporter PutP; Catalyzes the sodium-dependent uptake of extracellular L- proline; Belongs to the sodium:solute symporter (SSF) (TC 2.A.21) family. (520 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (496 aa)
fhsFormate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. (554 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (189 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (181 aa)
thyXThymidylate synthase ThyX; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. (248 aa)
APT87133.1Converts 2-oxoglutarate to glutamate; in Escherichia coli this enzyme plays a role in glutamate synthesis when the cell is under energy restriction; uses NADPH; forms a homohexamer; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (448 aa)
gcvPGlycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. (949 aa)
gcvTGlycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (370 aa)
gcvHGlycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (129 aa)
glnAGlutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (477 aa)
glnA-2Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (478 aa)
gltBGlutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1526 aa)
gltDGlutamate synthase is composed of subunits alpha and beta; beta subunit is a flavin adenine dinucleotide-NADPH dependent oxidoreductase; provides electrons to the alpha subunit, which binds L-glutamine and 2-oxoglutarate and forms L-glutamate; Derived by automated computational analysis using gene prediction method: Protein Homology. (513 aa)
APT87250.1Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family. (445 aa)
proAGamma-glutamyl phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (423 aa)
proBGlutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (410 aa)
purMPhosphoribosylaminoimidazole synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (350 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (496 aa)
purQPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (226 aa)
purSPhosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (81 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (294 aa)
APT87593.1Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (476 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (428 aa)
APT87640.1Inosine-5-monophosphate dehydrogenase; Catalyzes the synthesis of xanthosine monophosphate by the NAD+ dependent oxidation of inosine monophosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (478 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (431 aa)
APT87720.1Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (1144 aa)
Your Current Organism:
Corynebacterium flavescens
NCBI taxonomy Id: 28028
Other names: ATCC 10340, C. flavescens, CCUG 28791, CIP 69.5, DSM 20296, IFO 14136, LMG 4046, LMG:4046, Microbacterium flavum , Mycobacterium flavum, NBRC 14136, NCCB 42012, NCIB 8707, NCIB:8707, NCIMB 8707
Server load: low (34%) [HD]