Your Input: | |||||
ldh | L-lactate dehydrogenase; Catalyzes the conversion of lactate to pyruvate. (320 aa) | ||||
ARJ28603.1 | Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (399 aa) | ||||
ARJ28788.1 | N-succinyldiaminopimelate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (388 aa) | ||||
ldh-2 | L-lactate dehydrogenase; Catalyzes the conversion of lactate to pyruvate. (321 aa) | ||||
ARJ28829.1 | L-serine dehydratase, iron-sulfur-dependent subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (226 aa) | ||||
sdaAA | L-serine dehydratase, iron-sulfur-dependent subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (298 aa) | ||||
ARJ28884.1 | O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology. (426 aa) | ||||
luxS | S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. (156 aa) | ||||
metK | Methionine adenosyltransferase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (398 aa) | ||||
ARJ29503.1 | Phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (539 aa) | ||||
ARJ29508.1 | Free methionine-(R)-sulfoxide reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (155 aa) | ||||
mtnN | 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Belongs to the PNP/UDP phosphorylase family. MtnN subfamily. (228 aa) | ||||
ARJ29772.1 | Aspartate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (400 aa) | ||||
asd | Aspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (329 aa) | ||||
ARJ29854.1 | Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (425 aa) | ||||
ARJ29855.1 | Aspartate kinase; Catalyzes the formation of 4-phospho-L-aspartate from L-aspartate and ATP; lysine and threonine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (457 aa) | ||||
mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 3 family. (314 aa) | ||||
ARJ30607.1 | Branched chain amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (358 aa) | ||||
ARJ30633.1 | Serine O-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (213 aa) | ||||
cysK | Cysteine synthase A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (310 aa) | ||||
ARJ30704.1 | Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa) | ||||
ARJ30885.1 | Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (298 aa) | ||||
ARJ30749.1 | Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (364 aa) | ||||
ARJ30750.1 | Cystathionine gamma-synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa) | ||||
ARJ30751.1 | Bifunctional homocysteine S-methyltransferase/methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (612 aa) | ||||
ARJ30752.1 | 5-methyltetrahydropteroyltriglutamate-- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (742 aa) | ||||
ARJ30801.1 | Homoserine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the AB hydrolase superfamily. MetX family. (322 aa) |