STRINGSTRING
mnmA_1 mnmA_1 thrS thrS infC infC rpmI rpmI rplT rplT rsmG rsmG proS proS tsaD tsaD rpmB rpmB rpmG2 rpmG2 ftsY ftsY gyrA_1 gyrA_1 trmD trmD aspS aspS cshA_1 cshA_1 aviRb aviRb ileS ileS ALJ45494.1 ALJ45494.1 atpG atpG atpA_1 atpA_1 atpH atpH atpF atpF atpE atpE atpB atpB ALJ45589.1 ALJ45589.1 atpC atpC atpD atpD rlmCD rlmCD rluD_1 rluD_1 lepA lepA pheT pheT ALJ45786.1 ALJ45786.1 pyrG pyrG yidC yidC ALJ45803.1 ALJ45803.1 yvbK yvbK rpsP rpsP sigA sigA glnS glnS rho rho ffh ffh pheS pheS rpmE2 rpmE2 nudF nudF hisS hisS tsaB tsaB rimM rimM lysS lysS rplI rplI rpsR rpsR rpsF rpsF fusA_1 fusA_1 tsaE tsaE pyrH pyrH frr frr hflX hflX cspC cspC rhlE rhlE ALJ47219.1 ALJ47219.1 rplS rplS rplQ rplQ rpoA rpoA rpsD rpsD rpsK rpsK rpsM rpsM rpmJ rpmJ infA infA map_2 map_2 secY secY rplO rplO rpmD rpmD rpsE rpsE rplR rplR rplF rplF rpsH rpsH rpsN rpsN rplE rplE rplX rplX rplN rplN rpsQ rpsQ rpmC rpmC rplP rplP rpsC rpsC rplV rplV rpsS rpsS rplB rplB rplW rplW rplD rplD rplC rplC rpsJ rpsJ fusA_2 fusA_2 rpsG rpsG rpsL rpsL rpoC rpoC rpoB rpoB rplL rplL rplJ rplJ rplA rplA rplK rplK nusG nusG secE secE tufA tufA hpf hpf xerD_4 xerD_4 rpsU rpsU ALJ47422.1 ALJ47422.1 gltX gltX rpsO rpsO argS argS secD-2 secD-2 rbfA rbfA metG metG gyrB_1 gyrB_1 rnr rnr leuS leuS ALJ47836.1 ALJ47836.1 miaB miaB truB truB tyrS tyrS mnmG mnmG cshA_2 cshA_2 iphP iphP ALJ48037.1 ALJ48037.1 mnmA_2 mnmA_2 rnc rnc acpP_1 acpP_1 rimP rimP nusA nusA infB_1 infB_1 gyrB_2 gyrB_2 rpsT rpsT prfB prfB gyrA_2 gyrA_2 efp efp rpmH rpmH prmC prmC ALJ48551.1 ALJ48551.1 rpmF rpmF era era tig tig trpS2 trpS2 asnS asnS rplM rplM rpsI rpsI rpsB rpsB tsf tsf mnmA_3 mnmA_3 ndk ndk ALJ48825.1 ALJ48825.1 alaS_2 alaS_2 rsfS rsfS rsmA rsmA miaA_1 miaA_1 prfA prfA ALJ49087.1 ALJ49087.1 serS serS rpmA rpmA rplU rplU miaA_2 miaA_2 rnd rnd rpsA_2 rpsA_2 valS valS ALJ49202.1 ALJ49202.1 secA secA secG secG nnr nnr obg obg ALJ49329.1 ALJ49329.1 mnmE_2 mnmE_2 rplY rplY yajC yajC ALJ49403.1 ALJ49403.1 ALJ49422.1 ALJ49422.1 ALJ49423.1 ALJ49423.1 rpsA_3 rpsA_3 recD2_5 recD2_5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
mnmA_1tRNA-specific 2-thiouridylase MnmA; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA, leading to the formation of s(2)U34. (355 aa)
thrSThreonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (646 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (203 aa)
rpmI50S ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (65 aa)
rplT50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (116 aa)
rsmGRibosomal RNA small subunit methyltransferase G; Specifically methylates the N7 position of a guanine in 16S rRNA; Belongs to the methyltransferase superfamily. RNA methyltransferase RsmG family. (206 aa)
proSProline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). (497 aa)
tsaDtRNA N6-adenosine threonylcarbamoyltransferase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family. (339 aa)
rpmB50S ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (86 aa)
rpmG250S ribosomal protein L33 2; Belongs to the bacterial ribosomal protein bL33 family. (62 aa)
ftsYSignal recognition particle receptor FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (319 aa)
gyrA_1DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (858 aa)
trmDtRNA (guanine-N(1)-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (225 aa)
aspSAspartate--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (587 aa)
cshA_1DEAD-box ATP-dependent RNA helicase CshA; Belongs to the DEAD box helicase family. (422 aa)
aviRb23S rRNA (uridine(2479)-2'-O)-methyltransferase. (254 aa)
ileSIsoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1162 aa)
ALJ45494.1Hypothetical protein; RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain). (81 aa)
atpGATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (298 aa)
atpA_1ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (527 aa)
atpHATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (186 aa)
atpFATP synthase subunit b; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (167 aa)
atpEATP synthase subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (85 aa)
atpBATP synthase subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (380 aa)
ALJ45589.1Hypothetical protein. (144 aa)
atpCATP synthase epsilon chain. (81 aa)
atpDATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (506 aa)
rlmCD23S rRNA (uracil-C(5))-methyltransferase RlmCD; Belongs to the class I-like SAM-binding methyltransferase superfamily. RNA M5U methyltransferase family. (462 aa)
rluD_1Ribosomal large subunit pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil. Belongs to the pseudouridine synthase RluA family. (306 aa)
lepAElongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (593 aa)
pheTPhenylalanine--tRNA ligase beta subunit; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (820 aa)
ALJ45786.1Transcriptional activator RfaH. (196 aa)
pyrGCTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (541 aa)
yidCMembrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (617 aa)
ALJ45803.1Hypothetical protein. (111 aa)
yvbKPutative N-acetyltransferase YvbK. (147 aa)
rpsP30S ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (184 aa)
sigARNA polymerase sigma factor SigA; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (286 aa)
glnSGlutamine--tRNA ligase. (579 aa)
rhoHypothetical protein; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (765 aa)
ffhSignal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (440 aa)
pheSPhenylalanine--tRNA ligase alpha subunit; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (339 aa)
rpmE250S ribosomal protein L31 type B. (84 aa)
nudFADP-ribose pyrophosphatase. (182 aa)
hisSHistidine--tRNA ligase. (454 aa)
tsaBtRNA threonylcarbamoyladenosine biosynthesis protein TsaB. (229 aa)
rimMRibosome maturation factor RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (180 aa)
lysSLysine--tRNA ligase; Belongs to the class-II aminoacyl-tRNA synthetase family. (575 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (147 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (90 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (114 aa)
fusA_1Elongation factor G. (718 aa)
tsaEtRNA threonylcarbamoyladenosine biosynthesis protein TsaE. (137 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (236 aa)
frrRibosome-recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (186 aa)
hflXGTPase HflX; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. HflX GTPase family. (419 aa)
cspCCold shock-like protein CspC. (161 aa)
rhlEATP-dependent RNA helicase RhlE; Belongs to the DEAD box helicase family. (374 aa)
ALJ47219.1Hypothetical protein; RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain). (99 aa)
rplS50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (116 aa)
rplQ50S ribosomal protein L17. (167 aa)
rpoADNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (330 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (201 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (126 aa)
rpmJ50S ribosomal protein L36. (38 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa)
map_2Methionine aminopeptidase 1; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (265 aa)
secYPreprotein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (446 aa)
rplO50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (148 aa)
rpmD50S ribosomal protein L30. (58 aa)
rpsE30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (172 aa)
rplR50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (114 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (189 aa)
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa)
rpsN30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (99 aa)
rplE50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (185 aa)
rplX50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (106 aa)
rplN50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (121 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (85 aa)
rpmC50S ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (65 aa)
rplP50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (144 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (243 aa)
rplV50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (136 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (89 aa)
rplB50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (274 aa)
rplW50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (96 aa)
rplD50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (208 aa)
rplC50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (205 aa)
rpsJ30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (119 aa)
fusA_2Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (705 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (158 aa)
rpsL30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (136 aa)
rpoCDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1427 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1270 aa)
rplL50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (124 aa)
rplJ50S ribosomal protein L10. (173 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (232 aa)
rplK50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (147 aa)
nusGHypothetical protein; Participates in transcription elongation, termination and antitermination. (180 aa)
secEPreprotein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (63 aa)
tufAElongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa)
hpfRibosome hibernation promoting factor. (99 aa)
xerD_4Tyrosine recombinase XerD; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. (293 aa)
rpsU30S ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (63 aa)
ALJ47422.1Aminopeptidase. (593 aa)
gltXGlutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (505 aa)
rpsO30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
argSArginine--tRNA ligase. (605 aa)
secD-2Bifunctional preprotein translocase subunit SecD/SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA; Belongs to the SecD/SecF family. SecD subfamily. (1007 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (110 aa)
metGMethionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (679 aa)
gyrB_1DNA gyrase subunit B. (625 aa)
rnrRibonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. (718 aa)
leuSLeucine--tRNA ligase; Belongs to the class-I aminoacyl-tRNA synthetase family. (944 aa)
ALJ47836.1Putative TrmH family tRNA/rRNA methyltransferase. (175 aa)
miaB(Dimethylallyl)adenosine tRNA methylthiotransferase MiaB; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine. (457 aa)
truBtRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (240 aa)
tyrSTyrosine--tRNA ligase. (430 aa)
mnmGtRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family. (628 aa)
cshA_2DEAD-box ATP-dependent RNA helicase CshA; Belongs to the DEAD box helicase family. (644 aa)
iphPTyrosine-protein phosphatase precursor. (355 aa)
ALJ48037.1WbqC-like protein family protein. (209 aa)
mnmA_2tRNA-specific 2-thiouridylase MnmA; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA, leading to the formation of s(2)U34. (377 aa)
rncRibonuclease 3; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (352 aa)
acpP_1Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis. (78 aa)
rimPRibosome maturation factor RimP; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (155 aa)
nusAHypothetical protein; Participates in both transcription termination and antitermination. (431 aa)
infB_1Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (1021 aa)
gyrB_2DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (652 aa)
rpsT30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (84 aa)
prfBPeptide chain release factor 2. (319 aa)
gyrA_2DNA gyrase subunit A. (927 aa)
efpElongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (188 aa)
rpmH50S ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family. (52 aa)
prmCRelease factor glutamine methyltransferase; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily. (278 aa)
ALJ48551.1Hypothetical protein. (192 aa)
rpmF50S ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (61 aa)
eraGTPase Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (293 aa)
tigTrigger factor. (451 aa)
trpS2Tryptophan--tRNA ligase 2; Belongs to the class-I aminoacyl-tRNA synthetase family. (364 aa)
asnSAsparagine--tRNA ligase. (467 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (153 aa)
rpsI30S ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (128 aa)
rpsB30S ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (278 aa)
tsfElongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (330 aa)
mnmA_3tRNA-specific 2-thiouridylase MnmA; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA, leading to the formation of s(2)U34. (361 aa)
ndkNucleoside diphosphate kinase. (154 aa)
ALJ48825.1DNA-directed RNA polymerase subunit alpha. (244 aa)
alaS_2Alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (872 aa)
rsfSRibosomal silencing factor RsfS; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation. (119 aa)
rsmARibosomal RNA small subunit methyltransferase A; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (266 aa)
miaA_1tRNA dimethylallyltransferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family. (300 aa)
prfAPeptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (370 aa)
ALJ49087.1Hypothetical protein. (589 aa)
serSSerine--tRNA ligase. (424 aa)
rpmA50S ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (87 aa)
rplU50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (121 aa)
miaA_2tRNA dimethylallyltransferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family. (306 aa)
rndRibonuclease D. (219 aa)
rpsA_230S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (600 aa)
valSValine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (878 aa)
ALJ49202.1Hypothetical protein. (422 aa)
secAPreprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (1105 aa)
secGPreprotein translocase subunit SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (131 aa)
nnrBifunctional NAD(P)H-hydrate repair enzyme Nnr; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-specific NAD(P)H-hydrate dehydratase to al [...] (503 aa)
obgGTPase Obg; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (388 aa)
ALJ49329.1Putative TrmH family tRNA/rRNA methyltransferase. (280 aa)
mnmE_2tRNA modification GTPase MnmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. TrmE GTPase family. (465 aa)
rplY50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (196 aa)
yajCPreprotein translocase subunit YajC. (107 aa)
ALJ49403.1ATP-dependent helicase HepA. (993 aa)
ALJ49422.1Hypothetical protein. (59 aa)
ALJ49423.1Hypothetical protein. (236 aa)
rpsA_330S ribosomal protein S1. (1862 aa)
recD2_5ATP-dependent RecD-like DNA helicase. (763 aa)
Your Current Organism:
Bacteroides ovatus
NCBI taxonomy Id: 28116
Other names: ATCC 8483, B. ovatus, BCRC 10623, Bacteroides fragilis subsp. ovatus, CCRC 10623, CCRC:10623, CCUG 4943, CIP 103756, JCM 5824, NCTC 11153, Pasteurella ovata, Pseudobacterium ovatum, bacterium NLAE-zl-C11, bacterium NLAE-zl-C34, bacterium NLAE-zl-C500, bacterium NLAE-zl-C57, bacterium NLAE-zl-H304, bacterium NLAE-zl-H361, bacterium NLAE-zl-H59, bacterium NLAE-zl-H73
Server load: low (30%) [HD]