STRINGSTRING
smpB smpB rplS rplS trmD trmD rimM rimM rpsP rpsP ffh ffh fusA fusA secA secA rpsT rpsT prfC prfC rpsO rpsO truB truB rbfA rbfA infB infB nusA nusA rimP rimP secG secG rpmA rpmA rplU rplU ppa ppa rplI rplI rpsR rpsR CH54_2024 CH54_2024 rpsF rpsF efp efp arfA arfA rplQ rplQ rpoA rpoA rpsD rpsD rpsK rpsK rpsM rpsM rpmJ rpmJ secY secY rplO rplO rpmD rpmD rpsE rpsE rplR rplR rplF rplF rpsH rpsH rpsN rpsN rplE rplE rplX rplX rplN rplN rpsQ rpsQ rpmC rpmC rplP rplP rpsC rpsC rplV rplV rpsS rpsS rplB rplB rplW rplW rplD rplD rplC rplC rpsJ rpsJ tuf tuf fusA-2 fusA-2 rpsG rpsG rpsL rpsL selB selB rpmH rpmH rnpA rnpA yidD yidD yidC yidC atpC atpC atpD atpD atpG atpG atpA atpA atpH atpH infC infC atpF atpF atpE atpE atpB atpB atpI atpI rpmI rpmI rplT rplT rpmB rpmB rpmG rpmG secB secB rpmE rpmE rho rho ftsY ftsY rfaH rfaH tuf-2 tuf-2 secE secE nusG nusG rplK rplK rplA rplA rplJ rplJ rplL rplL rpoB rpoB rpoC rpoC rplM rplM rpsI rpsI rpsU rpsU prfB prfB lysS lysS lgt lgt map-2 map-2 rpsB rpsB tsf tsf pyrH pyrH frr frr yaeJ yaeJ yajC yajC secD secD secF secF tig tig rpmJ-2 rpmJ-2 rpmE-2 rpmE-2 rplY rplY efp2 efp2 infA infA yciH yciH CH54_73 CH54_73 rpmF rpmF
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
smpBSsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (164 aa)
rplSRibosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (118 aa)
trmDtRNA (guanine(37)-N(1))-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (246 aa)
rimM16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (182 aa)
rpsPS16: ribosomal protein S16; [J] COG0228 Ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (82 aa)
ffhSignal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual componen [...] (453 aa)
fusATranslation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (702 aa)
secAPreprotein translocase, SecA subunit; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. (904 aa)
rpsTRibosomal protein S20; Binds directly to 16S ribosomal RNA. (87 aa)
prfCPeptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (544 aa)
rpsOS15_bact: ribosomal protein S15; [J] COG0184 Ribosomal protein S15P/S13E. (89 aa)
truBtRNA pseudouridine(55) synthase; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (314 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (136 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (892 aa)
nusATranscription elongation factor; Participates in both transcription termination and antitermination. (495 aa)
rimPHypothetical protein; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (152 aa)
secGPreprotein translocase, SecG subunit; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (111 aa)
rpmAL27: ribosomal protein L27; [J] COG0211 Ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (85 aa)
rplURibosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa)
ppaInorganic pyrophosphatase family protein; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (175 aa)
rplIRibosomal protein L9; Binds to the 23S rRNA. (150 aa)
rpsRRibosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (75 aa)
CH54_2024Single-strand binding family protein; [L] COG2965 Primosomal replication protein N. (106 aa)
rpsFRibosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (130 aa)
efpTranslation elongation factor P; Involved in peptide bond synthesis. Alleviates ribosome stalling that occurs when 3 or more consecutive Pro residues or the sequence PPG is present in a protein, possibly by augmenting the peptidyl transferase activity of the ribosome. Modification of Lys-34 is required for alleviation; Belongs to the elongation factor P family. (188 aa)
arfAHypothetical protein; Domain of unknown function family protein; [S] COG3036 Uncharacterized protein conserved in bacteria. (66 aa)
rplQL17: ribosomal protein L17; [J] COG0203 Ribosomal protein L17. (129 aa)
rpoADNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (330 aa)
rpsDRibosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa)
rpsMbact_S13: 30S ribosomal protein S13; [J] COG0099 Ribosomal protein S13. (118 aa)
rpmJrpmJ_bact: ribosomal protein L36; [J] COG0257 Ribosomal protein L36; Belongs to the bacterial ribosomal protein bL36 family. (38 aa)
secYPreprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (443 aa)
rplORibosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (144 aa)
rpmDrpmD_bact: ribosomal protein L30; [J] COG1841 Ribosomal protein L30/L7E. (59 aa)
rpsERibosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (167 aa)
rplRRibosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (117 aa)
rplFRibosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa)
rpsHRibosomal S8 family protein; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (130 aa)
rpsNRibosomal S14p/S29e family protein; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa)
rplERibosomal L5 family protein; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rplXRibosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (104 aa)
rplNRibosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (123 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (84 aa)
rpmCL29: ribosomal protein L29; [J] COG0255 Ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (63 aa)
rplPRibosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (136 aa)
rpsCRibosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (232 aa)
rplVRibosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (110 aa)
rpsSRibosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa)
rplBRibosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (274 aa)
rplWRibosomal L23 family protein; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (100 aa)
rplD50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (201 aa)
rplC50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (209 aa)
rpsJRibosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa)
tufTranslation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa)
fusA-2Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (702 aa)
rpsGRibosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
rpsLRibosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (124 aa)
selBselB: selenocysteine-specific translation elongation factor; [J] COG3276 Selenocysteine-specific translation elongation factor. (630 aa)
rpmHrpmH_bact: ribosomal protein L34; [J] COG0230 Ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family. (46 aa)
rnpARibonuclease P protein component; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. (119 aa)
yidDPutative membrane protein insertion efficiency factor; Could be involved in insertion of integral membrane proteins into the membrane; Belongs to the UPF0161 family. (85 aa)
yidCPreprotein translocase subunit YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (546 aa)
atpCATP synthase F1, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (140 aa)
atpDATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (460 aa)
atpGATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (287 aa)
atpAATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (513 aa)
atpHATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (177 aa)
infCinfC: translation initiation factor IF-3; [J] COG0290 Translation initiation factor 3 (IF-3); Belongs to the IF-3 family. (116 aa)
atpFATP synthase F0, B subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa)
atpEATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (79 aa)
atpBATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (274 aa)
atpI[C] COG3312 F0F1-type ATP synthase, subunit I. (127 aa)
rpmIrpmI_bact: ribosomal protein L35; [J] COG0291 Ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (65 aa)
rplTRibosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa)
rpmBL28: ribosomal protein L28; [J] COG0227 Ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (78 aa)
rpmGrpmG_bact: ribosomal protein L33; [J] COG0267 Ribosomal protein L33; Belongs to the bacterial ribosomal protein bL33 family. (55 aa)
secBProtein-export chaperone SecB; One of the proteins required for the normal export of preproteins out of the cell cytoplasm. It is a molecular chaperone that binds to a subset of precursor proteins, maintaining them in a translocation-competent state. It also specifically binds to its receptor SecA. (158 aa)
rpmERibosomal protein L31; Binds the 23S rRNA. (72 aa)
rhoTranscription termination factor; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (419 aa)
ftsYSignal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components. (507 aa)
rfaHTranscription elongation factor/antiterminator RfaH; Enhances distal genes transcription elongation in a specialized subset of operons that encode extracytoplasmic components. RfaH is recruited into a multi-component RNA polymerase complex by the ops element, which is a short conserved DNA sequence located downstream of the main promoter of these operons. Once bound, RfaH suppresses pausing and inhibits Rho-dependent and intrinsic termination at a subset of sites. Termination signals are bypassed, which allows complete synthesis of long RNA chains. (162 aa)
tuf-2Translation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa)
secEPreprotein translocase, SecE subunit; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation; Belongs to the SecE/SEC61-gamma family. (127 aa)
nusGTranscription antiterminator; Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA transcriptional antitermination; Belongs to t [...] (181 aa)
rplKRibosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa)
rplARibosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (234 aa)
rplJRibosomal L10 family protein; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (167 aa)
rplLRibosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (122 aa)
rpoBDNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa)
rpoCDNA-directed RNA polymerase, beta' subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1406 aa)
rplMRibosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa)
rpsI[J] COG0103 Ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (130 aa)
rpsUS21p: ribosomal protein S21; [J] COG0828 Ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (71 aa)
prfBPeptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (289 aa)
lysSlysS_bact: lysine--tRNA ligase; [J] COG1190 Lysyl-tRNA synthetase (class II); Belongs to the class-II aminoacyl-tRNA synthetase family. (505 aa)
lgtProlipoprotein diacylglyceryl transferase; Catalyzes the transfer of the diacylglyceryl group from phosphatidylglycerol to the sulfhydryl group of the N-terminal cysteine of a prolipoprotein, the first step in the formation of mature lipoproteins; Belongs to the Lgt family. (290 aa)
map-2Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (263 aa)
rpsBrpsB_bact: ribosomal protein S2; [J] COG0052 Ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (241 aa)
tsfTranslation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (285 aa)
pyrHUMP kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (248 aa)
frrRibosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa)
yaeJRF-1 domain protein; [J] COG1186 Protein chain release factor B. (146 aa)
yajCPreprotein translocase, YajC subunit; The SecYEG-SecDF-YajC-YidC holo-translocon (HTL) protein secretase/insertase is a supercomplex required for protein secretion, insertion of proteins into membranes, and assembly of membrane protein complexes. While the SecYEG complex is essential for assembly of a number of proteins and complexes, the SecDF-YajC-YidC subcomplex facilitates these functions. (110 aa)
secDExport membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (604 aa)
secFExport membrane protein SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (322 aa)
tigTrigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (434 aa)
rpmJ-2rpmJ_bact: ribosomal protein L36; [J] COG0257 Ribosomal protein L36; Belongs to the bacterial ribosomal protein bL36 family. (47 aa)
rpmE-2L31: ribosomal protein L31; [J] COG0254 Ribosomal protein L31. (86 aa)
rplYRibosomal L25p family protein; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. (94 aa)
efp2[J] COG0231 Translation elongation factor P (EF-P)/translation initiation factor 5A (eIF-5A). (190 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa)
yciH[J] COG0023 Translation initiation factor 1 (eIF-1/SUI1) and related proteins. (108 aa)
CH54_73Conserved hypothetical protein; [R] COG1399 Predicted metal-binding, possibly nucleic acid-binding protein. (176 aa)
rpmFrpmF_bact: ribosomal protein L32; [J] COG0333 Ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (55 aa)
Your Current Organism:
Yersinia kristensenii
NCBI taxonomy Id: 28152
Other names: ATCC 33638, CCUG 11294, CCUG 8241, CIP 80.30, DSM 18543, JCM 7576, NCTC 11471, Y. kristensenii, strain 105
Server load: low (26%) [HD]