STRINGSTRING
argS argS lysS lysS hisS hisS gatD gatD thrS thrS gatE gatE alaS alaS ileS ileS SDW32575.1 SDW32575.1 SDW33610.1 SDW33610.1 SDW63642.1 SDW63642.1 valS valS metG metG mre11 mre11 gatB gatB aspS aspS proS proS ef1b ef1b gltX gltX serS serS tyrS tyrS SDW95241.1 SDW95241.1 gatC gatC gatA gatA SDX18540.1 SDX18540.1 trpS trpS SDX18924.1 SDX18924.1 pheT pheT cysS cysS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
argSarginyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (579 aa)
lysSlysyl-tRNA synthetase, class I; Belongs to the class-I aminoacyl-tRNA synthetase family. (545 aa)
hisShistidyl-tRNA synthetase; Belongs to the class-II aminoacyl-tRNA synthetase family. (435 aa)
gatDglutamyl-tRNA(Gln) amidotransferase subunit D; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (415 aa)
thrSSer-tRNA(Thr) hydrolase /threonyl-tRNA synthetase; Belongs to the class-II aminoacyl-tRNA synthetase family. (642 aa)
gatEglutamyl-tRNA(Gln) amidotransferase subunit E; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (623 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (927 aa)
ileSIsoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1074 aa)
SDW32575.1leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (892 aa)
SDW33610.1glycyl-tRNA synthetase. (596 aa)
SDW63642.1tRNA-binding protein. (114 aa)
valSvalyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 2 subfamily. (919 aa)
metGmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (732 aa)
mre11DNA repair exonuclease SbcCD nuclease subunit; Part of the Rad50/Mre11 complex, which is involved in the early steps of DNA double-strand break (DSB) repair. Mre11 binds to DSB ends and has both double-stranded 3'-5' exonuclease activity and single-stranded endonuclease activity; Belongs to the MRE11/RAD32 family. (417 aa)
gatBaspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (504 aa)
aspSaspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn). (480 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). (484 aa)
ef1bTranslation elongation factor 1B (aEF-1B); Promotes the exchange of GDP for GTP in EF-1-alpha/GDP, thus allowing the regeneration of EF-1-alpha/GTP that could then be used to form the ternary complex EF-1-alpha/GTP/AAtRNA. (88 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (579 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (460 aa)
tyrStyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 3 subfamily. (346 aa)
SDW95241.1alanyl-tRNA synthetase. (414 aa)
gatCaspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (92 aa)
gatAaspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (444 aa)
SDX18540.1leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (892 aa)
trpStryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). (549 aa)
SDX18924.1phenylalanyl-tRNA synthetase, alpha subunit. (503 aa)
pheTphenylalanyl-tRNA synthetase beta subunit. (583 aa)
cysScysteinyl-tRNA synthetase. (492 aa)
Your Current Organism:
Haloarcula vallismortis
NCBI taxonomy Id: 28442
Other names: ATCC 29715, CGMCC 1.2048, DSM 3756, H. vallismortis, Halobacterium vallismortis, IFO 14741, JCM 8877, NBRC 14741, strain J. F. 54
Server load: low (28%) [HD]