STRINGSTRING
AIH03554.1 AIH03554.1 rtcB rtcB rimO rimO rpsO rpsO rpoC rpoC rpoB rpoB rplL rplL rplJ rplJ rplA rplA rplK rplK nusG nusG rpmG rpmG tuf-2 tuf-2 AIH04747.1 AIH04747.1 rplI rplI rpsR rpsR rpsF rpsF hypA hypA AIH04726.1 AIH04726.1 AIH04696.1 AIH04696.1 proS proS rsmI rsmI queH queH prfA prfA rpmE rpmE AIH04597.1 AIH04597.1 AIH04566.1 AIH04566.1 AIH04564.1 AIH04564.1 AIH04554.1 AIH04554.1 cysS-2 cysS-2 hisS hisS AIH04424.1 AIH04424.1 AIH04360.1 AIH04360.1 smpB smpB rpmI rpmI rplT rplT pheS pheS AIH04308.1 AIH04308.1 rsmA rsmA rplM rplM rpsI rpsI truA truA cysS cysS rpsL rpsL rpsG rpsG fusA fusA tuf tuf rpsJ rpsJ rplC rplC rplD rplD rplW rplW rplB rplB rpsS rpsS rplV rplV rpsC rpsC rplP rplP rpmC rpmC rpsQ rpsQ rplN rplN rplX rplX rplE rplE rpsZ rpsZ rpsH rpsH rplF rplF rplR rplR rpsE rpsE AIH04220.1 AIH04220.1 rplO rplO infA infA rpmJ rpmJ rpsM rpsM rpsK rpsK rpsD rpsD rpoA rpoA AIH04209.1 AIH04209.1 rho rho miaA miaA AIH04192.1 AIH04192.1 AIH04188.1 AIH04188.1 AIH04187.1 AIH04187.1 AIH04180.1 AIH04180.1 AIH04176.1 AIH04176.1 rpoZ rpoZ rlmN rlmN rsmH rsmH alaS alaS miaB miaB rtcA rtcA AIH04097.1 AIH04097.1 AIH04074.1 AIH04074.1 leuS leuS AIH04044.1 AIH04044.1 rpsU rpsU AIH04039.1 AIH04039.1 AIH04028.1 AIH04028.1 gatA gatA gatC gatC mnmE mnmE rpmH rpmH AIH03964.1 AIH03964.1 AIH03959.1 AIH03959.1 AIH03951.1 AIH03951.1 tyrS tyrS nusB nusB tadA tadA thrS thrS infC infC gatB gatB valS valS infB infB gltX gltX rpsT rpsT lepA lepA AIH03838.1 AIH03838.1 fmt fmt AIH03800.1 AIH03800.1 AIH03793.1 AIH03793.1 rph rph AIH03771.1 AIH03771.1 rnc rnc tsaD tsaD nusA nusA AIH03668.1 AIH03668.1 mnmA mnmA AIH03659.1 AIH03659.1 AIH03658.1 AIH03658.1 mnmG mnmG ileS ileS tgt tgt gid gid tilS tilS rpmA rpmA rplU rplU def def rplS rplS frr frr tsf tsf rpsB rpsB AIH03574.1 AIH03574.1 rpmB rpmB aspS aspS argS argS AIH03540.1 AIH03540.1 AIH03523.1 AIH03523.1 selA selA lysS lysS AIH03502.1 AIH03502.1 glyQ glyQ glyS glyS AIH03493.1 AIH03493.1 AIH03488.1 AIH03488.1 rpmF rpmF pth pth rplY rplY AIH03459.1 AIH03459.1 rpsP rpsP rimM rimM trmD trmD metG metG efp efp serS serS trmJ trmJ AIH03365.1 AIH03365.1 AIH03353.1 AIH03353.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AIH03554.1Sulfite reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (106 aa)
rtcBtRNA-splicing ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the RtcB family. (476 aa)
rimOHypothetical protein; Catalyzes the methylthiolation of an aspartic acid residue of ribosomal protein S12; Belongs to the methylthiotransferase family. RimO subfamily. (423 aa)
rpsO30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
rpoCDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1353 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1362 aa)
rplL50S ribosomal protein L7; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (130 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (177 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (240 aa)
rplK50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa)
nusGAntitermination protein NusG; Participates in transcription elongation, termination and antitermination. (175 aa)
rpmG50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family. (56 aa)
tuf-2Elongation factor Tu; EF-Tu; promotes GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis; when the tRNA anticodon matches the mRNA codon, GTP hydrolysis results; the inactive EF-Tu-GDP leaves the ribosome and release of GDP is promoted by elongation factor Ts; many prokaryotes have two copies of the gene encoding EF-Tu; Derived by automated computational analysis using gene prediction method: Protein Homology. (399 aa)
AIH04747.1Hypothetical protein; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. (266 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (148 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (83 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (114 aa)
hypAHydrogenase nickel incorporation protein HypA; Involved in the maturation of [NiFe] hydrogenases. Required for nickel insertion into the metal center of the hydrogenase. (116 aa)
AIH04726.1Hydrogenase assembly protein HupF; Derived by automated computational analysis using gene prediction method: Protein Homology. (336 aa)
AIH04696.1Formate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (250 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (565 aa)
rsmIHypothetical protein; Catalyzes the 2'-O-methylation of the ribose of cytidine 1402 (C1402) in 16S rRNA. (280 aa)
queHHypothetical protein; Catalyzes the conversion of epoxyqueuosine (oQ) to queuosine (Q), which is a hypermodified base found in the wobble positions of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr). (188 aa)
prfAPeptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (367 aa)
rpmE50S ribosomal protein L31; Binds the 23S rRNA. (72 aa)
AIH04597.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (447 aa)
AIH04566.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (156 aa)
AIH04564.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (181 aa)
AIH04554.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (270 aa)
cysS-2cysteinyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (773 aa)
hisShistidyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (436 aa)
AIH04424.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa)
AIH04360.1Pseudouridine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (389 aa)
smpBSsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (149 aa)
rpmI50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL35 family. (68 aa)
rplT50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa)
pheSphenylalanine--tRNA ligase; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a heterotetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 1 subfamily; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (337 aa)
AIH04308.1Pseudouridine synthase; Responsible for synthesis of pseudouridine from uracil. Belongs to the pseudouridine synthase RluA family. (307 aa)
rsmA16S rRNA methyltransferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (242 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (148 aa)
rpsI30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. (129 aa)
truAPseudouridine synthase; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs. (268 aa)
cysScysteine--tRNA ligase; Catalyzes a two-step reaction; charges a cysteine by linking its carboxyl group to the alpha-phosphate of ATP then transfers the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (489 aa)
rpsL30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (123 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (157 aa)
fusAElongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (694 aa)
tufElongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (399 aa)
rpsJ30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa)
rplC50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (211 aa)
rplD50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (210 aa)
rplW50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (96 aa)
rplB50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (274 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (96 aa)
rplV50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (118 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (220 aa)
rplP50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (137 aa)
rpmC50S ribosomal protein L29; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uL29 family. (65 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (96 aa)
rplN50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rplX50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (98 aa)
rplE50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rpsZHypothetical protein; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa)
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (195 aa)
rplR50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (129 aa)
rpsE30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (167 aa)
AIH04220.150S ribosomal protein L30; Derived by automated computational analysis using gene prediction method: Protein Homology. (61 aa)
rplO50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (149 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (79 aa)
rpmJ50S ribosomal protein L36; Smallest protein in the large subunit; similar to what is found with protein L31 and L33 several bacterial genomes contain paralogs which may be regulated by zinc; the protein from Thermus thermophilus has a zinc-binding motif and contains a bound zinc ion; the proteins in this group have the motif; Derived by automated computational analysis using gene prediction method: Protein Homology. (37 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (123 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (126 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (210 aa)
rpoADNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (321 aa)
AIH04209.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (484 aa)
rhoTranscription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (417 aa)
miaAtRNA delta(2)-isopentenylpyrophosphate transferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family. (306 aa)
AIH04192.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (293 aa)
AIH04188.1Hydrogenase assembly protein HupF; Derived by automated computational analysis using gene prediction method: Protein Homology. (79 aa)
AIH04187.1Hydrogenase formation protein HupD; Derived by automated computational analysis using gene prediction method: Protein Homology. (376 aa)
AIH04180.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (232 aa)
AIH04176.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pseudouridine synthase RsuA family. (237 aa)
rpoZDNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (88 aa)
rlmN50S rRNA methyltransferase; Specifically methylates position 2 of adenine 2503 in 23S rRNA and position 2 of adenine 37 in tRNAs; Belongs to the radical SAM superfamily. RlmN family. (346 aa)
rsmH16S rRNA methyltransferase; Specifically methylates the N4 position of cytidine in position 1402 (C1402) of 16S rRNA. (286 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (866 aa)
miaBDimethylallyladenosine tRNA methylthiotransferase; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine. (446 aa)
rtcAHypothetical protein; Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing. (351 aa)
AIH04097.1RNA methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class I-like SAM-binding methyltransferase superfamily. RsmB/NOP family. (309 aa)
AIH04074.1Ribonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology. (486 aa)
leuSleucyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (861 aa)
AIH04044.1Hypothetical protein; RNA-free RNase P that catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. Belongs to the HARP family. (193 aa)
rpsU30S ribosomal protein S21; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS21 family. (70 aa)
AIH04039.1Hypothetical protein; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (514 aa)
AIH04028.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the tRNA nucleotidyltransferase/poly(A) polymerase family. (436 aa)
gatAglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (489 aa)
gatCglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (98 aa)
mnmEtRNA modification GTPase TrmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. TrmE GTPase family. (466 aa)
rpmH50S ribosomal protein L34; In Escherichia coli transcription of this gene is enhanced by polyamines; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL34 family. (44 aa)
AIH03964.1Preprotein translocase subunit TatB; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sulfur carrier protein TusA family. (71 aa)
AIH03959.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (659 aa)
AIH03951.1tryptophan--tRNA ligase; Catalyzes a two-step reaction, first charging a tryptophan molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (331 aa)
tyrStyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (402 aa)
nusBNitrogen utilization protein B; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (142 aa)
tadAAdenosine deaminase; Catalyzes the deamination of adenosine to inosine at the wobble position 34 of tRNA(Arg2); Belongs to the cytidine and deoxycytidylate deaminase family. (156 aa)
thrSthreonyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (647 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (175 aa)
gatBglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (476 aa)
valSvalyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (879 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (888 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (468 aa)
rpsT30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (93 aa)
lepAGTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (603 aa)
AIH03838.1RNA pseudouridine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pseudouridine synthase RsuA family. (257 aa)
fmtmethionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (311 aa)
AIH03800.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (470 aa)
AIH03793.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa)
rphRibonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. (236 aa)
AIH03771.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. (249 aa)
rncHypothetical protein; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (240 aa)
tsaDO-sialoglycoprotein endopeptidase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family. (332 aa)
nusATranscription elongation factor NusA; Participates in both transcription termination and antitermination. (421 aa)
AIH03668.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (66 aa)
mnmAHypothetical protein; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA, leading to the formation of s(2)U34. (338 aa)
AIH03659.1RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (447 aa)
AIH03658.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (239 aa)
mnmGtRNA uridine 5-carboxymethylaminomethyl modification protein; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family. (622 aa)
ileSisoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (933 aa)
tgtQueuine tRNA-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form t [...] (373 aa)
gidtRNA (uracil-5-)-methyltransferase; Catalyzes the folate-dependent formation of 5-methyl-uridine at position 54 (M-5-U54) in all tRNAs; Belongs to the MnmG family. TrmFO subfamily. (436 aa)
tilSHypothetical protein; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (455 aa)
rpmA50S ribosomal protein L27; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL27 family. (84 aa)
rplU50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (102 aa)
defPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (165 aa)
rplS50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (121 aa)
frrRibosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (184 aa)
tsfElongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (198 aa)
rpsB30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. (280 aa)
AIH03574.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (316 aa)
rpmB50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family. (65 aa)
aspSaspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (600 aa)
argSarginine--tRNA ligase; Catalyzes a two-step reaction, first charging an arginine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; class-I aminoacyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (549 aa)
AIH03540.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (146 aa)
AIH03523.1Beta-lactamase; Derived by automated computational analysis using gene prediction method: Protein Homology. (253 aa)
selASelenocysteine synthase; Converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) required for selenoprotein biosynthesis. (460 aa)
lysSlysine--tRNA ligase; Class II; LysRS2; catalyzes a two-step reaction, first charging a lysine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; in Methanosarcina barkeri, LysRS2 charges both tRNA molecules for lysine that exist in this organism and in addition can charge the tRNAPyl with lysine in the presence of LysRS1; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (497 aa)
AIH03502.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (245 aa)
glyQglycyl-tRNA synthetase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (284 aa)
glySHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (691 aa)
AIH03493.1Translation elongation factor; Derived by automated computational analysis using gene prediction method: Protein Homology. (637 aa)
AIH03488.1tRNA (adenine-N1)-methyltransferase; Catalyzes the S-adenosyl-L-methionine-dependent formation of N(1)-methyladenine at position 58 (m1A58) in tRNA. (255 aa)
rpmF50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family. (60 aa)
pthpeptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (187 aa)
rplY50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (199 aa)
AIH03459.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SUA5 family. (197 aa)
rpsP30S ribosomal protein S16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS16 family. (85 aa)
rimMHypothetical protein; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (171 aa)
trmDHypothetical protein; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (437 aa)
metGmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (628 aa)
efpElongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (187 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (429 aa)
trmJRNA methyltransferase; Catalyzes the formation of 2'O-methylated cytidine (Cm32) or 2'O-methylated uridine (Um32) at position 32 in tRNA. (274 aa)
AIH03365.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class I-like SAM-binding methyltransferase superfamily. RNA M5U methyltransferase family. (431 aa)
AIH03353.1Heterodisulfide reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (300 aa)
Your Current Organism:
Thermodesulfobacterium commune
NCBI taxonomy Id: 289377
Other names: T. commune DSM 2178, Thermodesulfobacterium commune DSM 2178
Server load: low (28%) [HD]