STRINGSTRING
atpE atpE AIH03353.1 AIH03353.1 AIH04790.1 AIH04790.1 AIH04783.1 AIH04783.1 panD panD panC panC rpsO rpsO rpoC rpoC rpoB rpoB rplL rplL rplJ rplJ rplA rplA rplK rplK nusG nusG rpmG rpmG tuf-2 tuf-2 AIH04742.1 AIH04742.1 rplI rplI rpsR rpsR rpsF rpsF AIH04737.1 AIH04737.1 proS proS queH queH prfA prfA rpmE rpmE dnaE dnaE trpA trpA trpB trpB AIH04596.1 AIH04596.1 AIH04583.1 AIH04583.1 folD folD folE2 folE2 AIH04539.1 AIH04539.1 pyrB pyrB pyrC pyrC cysS-2 cysS-2 AIH04529.1 AIH04529.1 AIH04509.1 AIH04509.1 thiE thiE hisS hisS speE-2 speE-2 nadK nadK thiC thiC AIH04424.1 AIH04424.1 murA murA trpD trpD hemA hemA nadD nadD AIH04386.1 AIH04386.1 AIH04384.1 AIH04384.1 smpB smpB ribH ribH panB panB rpmI rpmI rplT rplT pheS pheS carA carA coaE coaE AIH04302.1 AIH04302.1 rplM rplM rpsI rpsI cysS cysS speE speE rpsL rpsL rpsG rpsG fusA fusA tuf tuf rpsJ rpsJ rplC rplC rplD rplD rplW rplW rplB rplB rpsS rpsS rplV rplV rpsC rpsC rplP rplP rpmC rpmC rpsQ rpsQ rplN rplN rplX rplX rplE rplE rpsZ rpsZ rpsH rpsH rplF rplF rplR rplR rpsE rpsE AIH04220.1 AIH04220.1 rplO rplO adk adk infA infA rpmJ rpmJ rpsM rpsM rpsK rpsK rpsD rpsD rpoA rpoA rho rho rpoZ rpoZ AIH04158.1 AIH04158.1 AIH04144.1 AIH04144.1 trpF trpF AIH04126.1 AIH04126.1 alaS alaS AIH04110.1 AIH04110.1 pyrF pyrF leuS leuS rpsU rpsU AIH04039.1 AIH04039.1 AIH04035.1 AIH04035.1 AIH04034.1 AIH04034.1 gatA gatA gatC gatC AIH04014.1 AIH04014.1 rpmH rpmH trpC trpC AIH03981.1 AIH03981.1 AIH03969.1 AIH03969.1 AIH03959.1 AIH03959.1 AIH03951.1 AIH03951.1 queF queF hemC hemC tyrS tyrS cmk cmk nusB nusB thiL thiL ndk ndk thrS thrS infC infC AIH03905.1 AIH03905.1 AIH03904.1 AIH03904.1 gatB gatB AIH03899.1 AIH03899.1 queE queE AIH03886.1 AIH03886.1 valS valS infB infB kdsB kdsB gltX gltX rpsT rpsT carB carB purA purA lepA lepA fmt fmt AIH03800.1 AIH03800.1 AIH03798.1 AIH03798.1 dacA dacA AIH03771.1 AIH03771.1 AIH03757.1 AIH03757.1 AIH03750.1 AIH03750.1 purC purC AIH03740.1 AIH03740.1 AIH03732.1 AIH03732.1 AIH03723.1 AIH03723.1 AIH03702.1 AIH03702.1 nusA nusA coaX coaX AIH03681.1 AIH03681.1 AIH03679.1 AIH03679.1 AIH03675.1 AIH03675.1 AIH03670.1 AIH03670.1 AIH03669.1 AIH03669.1 priA priA AIH03659.1 AIH03659.1 ileS ileS thi4 thi4 tgt tgt coaD coaD AIH03628.1 AIH03628.1 rpmA rpmA rplU rplU AIH03614.1 AIH03614.1 acsA acsA AIH03610.1 AIH03610.1 def def rplS rplS frr frr pyrH pyrH tsf tsf rpsB rpsB purE purE purD purD rpmB rpmB aspS aspS argS argS AIH03548.1 AIH03548.1 AIH03545.1 AIH03545.1 AIH03537.1 AIH03537.1 atpC atpC atpD atpD atpG atpG atpA atpA atpH atpH atpF-2 atpF-2 atpF atpF selA selA lysS lysS gmk gmk purM purM glyQ glyQ glyS glyS AIH03493.1 AIH03493.1 rpmF rpmF pth pth rplY rplY prs prs AIH03463.1 AIH03463.1 AIH03457.1 AIH03457.1 queC queC fliI fliI queA queA hemL hemL rpsP rpsP metG metG efp efp bpsA bpsA AIH03398.1 AIH03398.1 pyrG pyrG nadA nadA serS serS AIH03372.1 AIH03372.1 atpB atpB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpEATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (124 aa)
AIH03353.1Heterodisulfide reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (300 aa)
AIH04790.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (258 aa)
AIH04783.1Magnesium chelatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (336 aa)
panDAspartate decarboxylase; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine. (121 aa)
panCPantoate--beta-alanine ligase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (282 aa)
rpsO30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
rpoCDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1353 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1362 aa)
rplL50S ribosomal protein L7; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (130 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (177 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (240 aa)
rplK50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa)
nusGAntitermination protein NusG; Participates in transcription elongation, termination and antitermination. (175 aa)
rpmG50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family. (56 aa)
tuf-2Elongation factor Tu; EF-Tu; promotes GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis; when the tRNA anticodon matches the mRNA codon, GTP hydrolysis results; the inactive EF-Tu-GDP leaves the ribosome and release of GDP is promoted by elongation factor Ts; many prokaryotes have two copies of the gene encoding EF-Tu; Derived by automated computational analysis using gene prediction method: Protein Homology. (399 aa)
AIH04742.1DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity. Belongs to the helicase family. DnaB subfamily. (460 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (148 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (83 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (114 aa)
AIH04737.1Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (441 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (565 aa)
queHHypothetical protein; Catalyzes the conversion of epoxyqueuosine (oQ) to queuosine (Q), which is a hypermodified base found in the wobble positions of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr). (188 aa)
prfAPeptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (367 aa)
rpmE50S ribosomal protein L31; Binds the 23S rRNA. (72 aa)
dnaEDNA polymerase III subunit alpha; Catalyzes DNA-template-directed extension of the 3'-end of a DNA strand by one nucleotide at a time. Proposed to be responsible for the synthesis of the lagging strand. In the low GC gram positive bacteria this enzyme is less processive and more error prone than its counterpart in other bacteria; Derived by automated computational analysis using gene prediction method: Protein Homology. (1140 aa)
trpATryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (267 aa)
trpBTryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (396 aa)
AIH04596.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (264 aa)
AIH04583.1Hypothetical protein; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (403 aa)
folDMethenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (301 aa)
folE2GTP cyclohydrolase; Converts GTP to 7,8-dihydroneopterin triphosphate. (263 aa)
AIH04539.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa)
pyrBAspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (322 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate; Belongs to the metallo-dependent hydrolases superfamily. DHOase family. Class I DHOase subfamily. (427 aa)
cysS-2cysteinyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (773 aa)
AIH04529.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (170 aa)
AIH04509.1Cobyrinic acid a,c-diamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (355 aa)
thiEThiamine-phosphate pyrophosphorylase; Condenses 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate (THZ-P) and 2-methyl-4-amino-5-hydroxymethyl pyrimidine pyrophosphate (HMP-PP) to form thiamine monophosphate (TMP). Belongs to the thiamine-phosphate synthase family. (206 aa)
hisShistidyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (436 aa)
speE-2Spermine synthase; Catalyzes the irreversible transfer of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy-AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine. (273 aa)
nadKHypothetical protein; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (267 aa)
thiCPhosphomethylpyrimidine synthase; Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction. Belongs to the ThiC family. (436 aa)
AIH04424.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa)
murAUDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (424 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (345 aa)
hemAglutamyl-tRNA reductase; Catalyzes the NADPH-dependent reduction of glutamyl-tRNA(Glu) to glutamate 1-semialdehyde (GSA). (470 aa)
nadDHypothetical protein; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (210 aa)
AIH04386.1dTDP-4-dehydrorhamnose 3,5-epimerase; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family. (188 aa)
AIH04384.1dTDP-4-dehydrorhamnose reductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose. (282 aa)
smpBSsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (149 aa)
ribH6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin. (158 aa)
panB3-methyl-2-oxobutanoate hydroxymethyltransferase; Catalyzes the reversible reaction in which hydroxymethyl group from 5,10-methylenetetrahydrofolate is transferred onto alpha- ketoisovalerate to form ketopantoate; Belongs to the PanB family. (279 aa)
rpmI50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL35 family. (68 aa)
rplT50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa)
pheSphenylalanine--tRNA ligase; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a heterotetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 1 subfamily; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (337 aa)
carACarbamoyl phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (377 aa)
coaEHypothetical protein; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (186 aa)
AIH04302.1Hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (187 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (148 aa)
rpsI30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. (129 aa)
cysScysteine--tRNA ligase; Catalyzes a two-step reaction; charges a cysteine by linking its carboxyl group to the alpha-phosphate of ATP then transfers the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (489 aa)
speESpermine synthase; Catalyzes the irreversible transfer of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy-AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine; Belongs to the spermidine/spermine synthase family. (302 aa)
rpsL30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (123 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (157 aa)
fusAElongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (694 aa)
tufElongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (399 aa)
rpsJ30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa)
rplC50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (211 aa)
rplD50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (210 aa)
rplW50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (96 aa)
rplB50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (274 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (96 aa)
rplV50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (118 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (220 aa)
rplP50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (137 aa)
rpmC50S ribosomal protein L29; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uL29 family. (65 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (96 aa)
rplN50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rplX50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (98 aa)
rplE50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rpsZHypothetical protein; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa)
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (195 aa)
rplR50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (129 aa)
rpsE30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (167 aa)
AIH04220.150S ribosomal protein L30; Derived by automated computational analysis using gene prediction method: Protein Homology. (61 aa)
rplO50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (149 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (215 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (79 aa)
rpmJ50S ribosomal protein L36; Smallest protein in the large subunit; similar to what is found with protein L31 and L33 several bacterial genomes contain paralogs which may be regulated by zinc; the protein from Thermus thermophilus has a zinc-binding motif and contains a bound zinc ion; the proteins in this group have the motif; Derived by automated computational analysis using gene prediction method: Protein Homology. (37 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (123 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (126 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (210 aa)
rpoADNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (321 aa)
rhoTranscription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (417 aa)
rpoZDNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (88 aa)
AIH04158.1IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (428 aa)
AIH04144.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (237 aa)
trpFN-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. (206 aa)
AIH04126.1Riboflavin synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (217 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (866 aa)
AIH04110.1Creatinine amidohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (243 aa)
pyrFOrotidine 5-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (245 aa)
leuSleucyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (861 aa)
rpsU30S ribosomal protein S21; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS21 family. (70 aa)
AIH04039.1Hypothetical protein; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (514 aa)
AIH04035.1S-adenosylmethionine decarboxylase; Catalyzes the decarboxylation of S-adenosylmethionine to S- adenosylmethioninamine (dcAdoMet), the propylamine donor required for the synthesis of the polyamines spermine and spermidine from the diamine putrescine. (145 aa)
AIH04034.1Phosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (199 aa)
gatAglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (489 aa)
gatCglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (98 aa)
AIH04014.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa)
rpmH50S ribosomal protein L34; In Escherichia coli transcription of this gene is enhanced by polyamines; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL34 family. (44 aa)
trpCHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (266 aa)
AIH03981.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ComB family. (245 aa)
AIH03969.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (71 aa)
AIH03959.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (659 aa)
AIH03951.1tryptophan--tRNA ligase; Catalyzes a two-step reaction, first charging a tryptophan molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (331 aa)
queF7-cyano-7-deazaguanine reductase; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1). Belongs to the GTP cyclohydrolase I family. QueF type 1 subfamily. (123 aa)
hemCHydroxymethylbilane synthase; Tetrapolymerization of the monopyrrole PBG into the hydroxymethylbilane pre-uroporphyrinogen in several discrete steps. Belongs to the HMBS family. (304 aa)
tyrStyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (402 aa)
cmkHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (226 aa)
nusBNitrogen utilization protein B; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (142 aa)
thiLHypothetical protein; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1; Belongs to the thiamine-monophosphate kinase family. (314 aa)
ndkNucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (140 aa)
thrSthreonyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (647 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (175 aa)
AIH03905.1Hypothetical protein; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. (315 aa)
AIH03904.1Deoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA. (146 aa)
gatBglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (476 aa)
AIH03899.1acyl-CoA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (538 aa)
queE7-carboxy-7-deazaguanine synthase; Catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7- deazaguanine (CDG), a step common to the biosynthetic pathways of all 7-deazapurine-containing compounds. (216 aa)
AIH03886.16-pyruvoyl tetrahydrobiopterin synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (124 aa)
valSvalyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (879 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (888 aa)
kdsB3-deoxy-manno-octulosonate cytidylyltransferase; Activates KDO (a required 8-carbon sugar) for incorporation into bacterial lipopolysaccharide in Gram-negative bacteria. (247 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (468 aa)
rpsT30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (93 aa)
carBCarbamoyl phosphate synthase large subunit; Four CarB-CarA dimers form the carbamoyl phosphate synthetase holoenzyme that catalyzes the production of carbamoyl phosphate; CarB is responsible for the amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (1084 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa)
lepAGTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (603 aa)
fmtmethionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (311 aa)
AIH03800.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (470 aa)
AIH03798.1Dihydropteroate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (284 aa)
dacAMembrane protein; Catalyzes the condensation of 2 ATP molecules into cyclic di- AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria. (266 aa)
AIH03771.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. (249 aa)
AIH03757.12-dehydropantoate 2-reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. (312 aa)
AIH03750.1Cobalamin biosynthesis protein CbiM; Catalyzes the ATP-dependent transport of cobalt; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (295 aa)
AIH03740.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (356 aa)
AIH03732.1Radical SAM protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (345 aa)
AIH03723.1Delta-aminolevulinic acid dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ALAD family. (325 aa)
AIH03702.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (277 aa)
nusATranscription elongation factor NusA; Participates in both transcription termination and antitermination. (421 aa)
coaXBaf family transcriptional regulator; Catalyzes the phosphorylation of pantothenate (Pan), the first step in CoA biosynthesis. (256 aa)
AIH03681.1Hypothetical protein; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of replication [...] (371 aa)
AIH03679.1Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (177 aa)
AIH03675.1UDP-glucose 6-dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (435 aa)
AIH03670.1IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (196 aa)
AIH03669.1Fe-S oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa)
priAHypothetical protein; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (785 aa)
AIH03659.1RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (447 aa)
ileSisoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (933 aa)
thi4Ribulose-1,5-biphosphate synthetase; Involved in the biosynthesis of the thiazole moiety of thiamine. Catalyzes the conversion of NAD and glycine to adenosine diphosphate 5-(2-hydroxyethyl)-4-methylthiazole-2-carboxylate (ADT), an adenylated thiazole intermediate, using free sulfide as a source of sulfur. (256 aa)
tgtQueuine tRNA-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form t [...] (373 aa)
coaDPhosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (167 aa)
AIH03628.1Cobyrinic acid a,c-diamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (465 aa)
rpmA50S ribosomal protein L27; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL27 family. (84 aa)
rplU50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (102 aa)
AIH03614.15-amino-6-(5-phosphoribosylamino)uracil reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (220 aa)
acsA3-hydroxypropionyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (658 aa)
AIH03610.1Cobyrinic acid a,c-diamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (353 aa)
defPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (165 aa)
rplS50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (121 aa)
frrRibosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (184 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (238 aa)
tsfElongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (198 aa)
rpsB30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. (280 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (168 aa)
purDPhosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (427 aa)
rpmB50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family. (65 aa)
aspSaspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (600 aa)
argSarginine--tRNA ligase; Catalyzes a two-step reaction, first charging an arginine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; class-I aminoacyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (549 aa)
AIH03548.14-hydroxythreonine-4-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the PdxA family. (315 aa)
AIH03545.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadC/ModD family. (281 aa)
AIH03537.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. (186 aa)
atpCATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (142 aa)
atpDATP F0F1 synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (472 aa)
atpGATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (293 aa)
atpAATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (514 aa)
atpHATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (182 aa)
atpF-2ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (198 aa)
atpFHypothetical protein; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (141 aa)
selASelenocysteine synthase; Converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) required for selenoprotein biosynthesis. (460 aa)
lysSlysine--tRNA ligase; Class II; LysRS2; catalyzes a two-step reaction, first charging a lysine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; in Methanosarcina barkeri, LysRS2 charges both tRNA molecules for lysine that exist in this organism and in addition can charge the tRNAPyl with lysine in the presence of LysRS1; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (497 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (206 aa)
purMPhosphoribosylaminoimidazole synthetase; Catalyzes the formation of 1-(5-phosphoribosyl)-5-aminoimidazole from 2-(formamido)-N1-(5-phosphoribosyl)acetamidine and ATP in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (347 aa)
glyQglycyl-tRNA synthetase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (284 aa)
glySHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (691 aa)
AIH03493.1Translation elongation factor; Derived by automated computational analysis using gene prediction method: Protein Homology. (637 aa)
rpmF50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family. (60 aa)
pthpeptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (187 aa)
rplY50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (199 aa)
prsPhosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (318 aa)
AIH03463.1Phosphoribosylformylglycinamidine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (270 aa)
AIH03457.1L-aspartate oxidase; Catalyzes the oxidation of L-aspartate to iminoaspartate. (532 aa)
queC7-cyano-7-deazaguanine synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). Belongs to the QueC family. (229 aa)
fliIATP synthase; Involved in type III protein export during flagellum assembly; Derived by automated computational analysis using gene prediction method: Protein Homology. (435 aa)
queAS-adenosylmethionine tRNA ribosyltransferase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). (347 aa)
hemLGlutamate-1-semialdehyde aminotransferase; Converts (S)-4-amino-5-oxopentanoate to 5-aminolevulinate; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa)
rpsP30S ribosomal protein S16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS16 family. (85 aa)
metGmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (628 aa)
efpElongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (187 aa)
bpsAHypothetical protein; Involved in the biosynthesis of branched-chain polyamines, which support the growth of thermophiles under high-temperature conditions. Catalyzes the sequential condensation of spermidine with the aminopropyl groups of decarboxylated S-adenosylmethionines to produce N(4)-bis(aminopropyl)spermidine via N(4)-aminopropylspermidine. (349 aa)
AIH03398.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (225 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (556 aa)
nadAQuinolinate synthetase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate. (304 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (429 aa)
AIH03372.1Hypothetical protein; Probably acts as a heme chaperone, transferring heme to an unknown acceptor. Binds one molecule of heme per monomer, possibly covalently. Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine. Belongs to the anaerobic coproporphyrinogen-III oxidase family. (380 aa)
atpBATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (250 aa)
Your Current Organism:
Thermodesulfobacterium commune
NCBI taxonomy Id: 289377
Other names: T. commune DSM 2178, Thermodesulfobacterium commune DSM 2178
Server load: low (18%) [HD]