STRINGSTRING
cyoE cyoE cyoD cyoD cyoC cyoC cyoB cyoB cyoA cyoA yfaE yfaE nuoN nuoN nuoM nuoM nuoL nuoL nuoK nuoK nuoJ nuoJ nuoI nuoI nuoH nuoH nuoG nuoG nuoF nuoF nuoE nuoE nuoCD nuoCD nuoB nuoB nuoA nuoA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
cyoEProtohaeme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (294 aa)
cyoDCytochrome o ubiquinol oxidase, subunit IV; Ortholog to Escherichia coli bnum: b0429; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2. (100 aa)
cyoCCytochrome o ubiquinol oxidase, subunit III; Ortholog to Escherichia coli bnum: b0430; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82. (195 aa)
cyoBCytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. (653 aa)
cyoACytochrome o ubiquinol oxidase, subunit II; Ortholog to Escherichia coli bnum: b0432; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82. (294 aa)
yfaEConserved hypothetical protein with 2Fe-2S ferredoxin-like domain; Ortholog to Escherichia coli bnum: b2236. (96 aa)
nuoNNADH dehydrogenase I chain N, membrane subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (497 aa)
nuoMNADH dehydrogenase I chain M, membrane subunit; Ortholog to Escherichia coli bnum: b2277; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. (513 aa)
nuoLNADH dehydrogenase I chain L, membrane subunit; Ortholog to Escherichia coli bnum: b2278; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. (628 aa)
nuoKNADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
nuoJNADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (183 aa)
nuoINADH dehydrogenase I chain I, 2Fe-2S ferredoxin-related; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (181 aa)
nuoHNADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (323 aa)
nuoGNADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (919 aa)
nuoFNADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (443 aa)
nuoENADH dehydrogenase I chain E; Ortholog to Escherichia coli bnum: b2285; MultiFun: Metabolism 1.3.6; Metabolism 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. (173 aa)
nuoCDNADH dehydrogenase I chain C, D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (596 aa)
nuoBNADH dehydrogenase I chain B, binds FeS cluster N2; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (236 aa)
nuoANADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (146 aa)
Your Current Organism:
Blochmannia pennsylvanicus
NCBI taxonomy Id: 291272
Other names: C. Blochmannia pennsylvanicus str. BPEN, Candidatus Blochmannia pennsylvanicus BPEN, Candidatus Blochmannia pennsylvanicus str. BPEN, Candidatus Blochmannia pennsylvanicus strain BPEN
Server load: low (34%) [HD]