Your Input: | |||||
cyoE | Protohaeme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (294 aa) | ||||
cyoD | Cytochrome o ubiquinol oxidase, subunit IV; Ortholog to Escherichia coli bnum: b0429; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2. (100 aa) | ||||
cyoC | Cytochrome o ubiquinol oxidase, subunit III; Ortholog to Escherichia coli bnum: b0430; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82. (195 aa) | ||||
cyoB | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. (653 aa) | ||||
cyoA | Cytochrome o ubiquinol oxidase, subunit II; Ortholog to Escherichia coli bnum: b0432; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82. (294 aa) | ||||
yfaE | Conserved hypothetical protein with 2Fe-2S ferredoxin-like domain; Ortholog to Escherichia coli bnum: b2236. (96 aa) | ||||
nuoN | NADH dehydrogenase I chain N, membrane subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (497 aa) | ||||
nuoM | NADH dehydrogenase I chain M, membrane subunit; Ortholog to Escherichia coli bnum: b2277; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. (513 aa) | ||||
nuoL | NADH dehydrogenase I chain L, membrane subunit; Ortholog to Escherichia coli bnum: b2278; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. (628 aa) | ||||
nuoK | NADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa) | ||||
nuoJ | NADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (183 aa) | ||||
nuoI | NADH dehydrogenase I chain I, 2Fe-2S ferredoxin-related; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (181 aa) | ||||
nuoH | NADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (323 aa) | ||||
nuoG | NADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (919 aa) | ||||
nuoF | NADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (443 aa) | ||||
nuoE | NADH dehydrogenase I chain E; Ortholog to Escherichia coli bnum: b2285; MultiFun: Metabolism 1.3.6; Metabolism 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. (173 aa) | ||||
nuoCD | NADH dehydrogenase I chain C, D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (596 aa) | ||||
nuoB | NADH dehydrogenase I chain B, binds FeS cluster N2; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (236 aa) | ||||
nuoA | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (146 aa) |