STRINGSTRING
nuoG nuoG cyoC cyoC nuoK nuoK nuoL nuoL nuoCD nuoCD nuoM nuoM nuoN nuoN
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nuoGNADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (919 aa)
cyoCCytochrome o ubiquinol oxidase, subunit III; Ortholog to Escherichia coli bnum: b0430; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82. (195 aa)
nuoKNADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
nuoLNADH dehydrogenase I chain L, membrane subunit; Ortholog to Escherichia coli bnum: b2278; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. (628 aa)
nuoCDNADH dehydrogenase I chain C, D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (596 aa)
nuoMNADH dehydrogenase I chain M, membrane subunit; Ortholog to Escherichia coli bnum: b2277; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. (513 aa)
nuoNNADH dehydrogenase I chain N, membrane subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (497 aa)
Your Current Organism:
Blochmannia pennsylvanicus
NCBI taxonomy Id: 291272
Other names: C. Blochmannia pennsylvanicus str. BPEN, Candidatus Blochmannia pennsylvanicus BPEN, Candidatus Blochmannia pennsylvanicus str. BPEN, Candidatus Blochmannia pennsylvanicus strain BPEN
Server load: low (40%) [HD]