node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
cyoB | nuoA | BPEN_251 | BPEN_509 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.838 |
cyoB | nuoB | BPEN_251 | BPEN_508 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | NADH dehydrogenase I chain B, binds FeS cluster N2; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.869 |
cyoB | nuoE | BPEN_251 | BPEN_506 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | NADH dehydrogenase I chain E; Ortholog to Escherichia coli bnum: b2285; MultiFun: Metabolism 1.3.6; Metabolism 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. | 0.887 |
cyoB | nuoF | BPEN_251 | BPEN_505 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | NADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.760 |
cyoB | nuoG | BPEN_251 | BPEN_504 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | NADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.866 |
cyoB | nuoH | BPEN_251 | BPEN_503 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | NADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.977 |
cyoB | nuoI | BPEN_251 | BPEN_502 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | NADH dehydrogenase I chain I, 2Fe-2S ferredoxin-related; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.726 |
cyoB | nuoN | BPEN_251 | BPEN_497 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | NADH dehydrogenase I chain N, membrane subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.883 |
cyoB | sdhA | BPEN_251 | BPEN_339 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | Succinate dehydrogenase catalytic and flavoprotein subunit; Ortholog to Escherichia coli bnum: b0723; MultiFun: Metabolism 1.3.4, 1.3.6, 1.4.1; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. | 0.822 |
cyoB | sdhB | BPEN_251 | BPEN_340 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | Succinate dehydrogenase iron-sulfur protein; Ortholog to Escherichia coli bnum: b0724; MultiFun: Metabolism 1.3.4, 1.3.6, 1.4.1. | 0.817 |
cyoB | sdhC | BPEN_251 | BPEN_337 | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | Succinate dehydrogenase cytochrome b-556 subunit; Ortholog to Escherichia coli bnum: b0721; MultiFun: Cell structure 6.1; Metabolism 1.3.4, 1.3.6, 1.4.1, 1.4.3, 1.6.15.1. | 0.775 |
nuoA | cyoB | BPEN_509 | BPEN_251 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | Cytochrome o ubiquinol oxidase, subunit I; Ortholog to Escherichia coli bnum: b0431; MultiFun: Cell structure 6.1; Metabolism 1.3.6, 1.4.2; Transport 4.3.D.4, 4.S.82; Belongs to the heme-copper respiratory oxidase family. | 0.838 |
nuoA | nuoB | BPEN_509 | BPEN_508 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | NADH dehydrogenase I chain B, binds FeS cluster N2; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
nuoA | nuoE | BPEN_509 | BPEN_506 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | NADH dehydrogenase I chain E; Ortholog to Escherichia coli bnum: b2285; MultiFun: Metabolism 1.3.6; Metabolism 1.3.7, 1.4.1; Transport 4.3.D.1, 4.S.130. | 0.999 |
nuoA | nuoF | BPEN_509 | BPEN_505 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | NADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.998 |
nuoA | nuoG | BPEN_509 | BPEN_504 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | NADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.997 |
nuoA | nuoH | BPEN_509 | BPEN_503 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | NADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.999 |
nuoA | nuoI | BPEN_509 | BPEN_502 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | NADH dehydrogenase I chain I, 2Fe-2S ferredoxin-related; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
nuoA | nuoJ | BPEN_509 | BPEN_501 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | NADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.997 |
nuoA | nuoK | BPEN_509 | BPEN_500 | NADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | NADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.999 |