Your Input: | |||||
azoR_2 | FMN-dependent NADH-azoreductase; Catalyzes the reductive cleavage of azo bond in aromatic azo compounds to the corresponding amines. Requires NADH, but not NADPH, as an electron donor for its activity; Belongs to the azoreductase type 1 family. (199 aa) | ||||
qorA_3 | Quinone oxidoreductase 1. (325 aa) | ||||
ssuE | FMN reductase (NADPH). (197 aa) | ||||
CEL32124.1 | NADPH-dependent FMN reductase. (237 aa) | ||||
CEL31918.1 | PepSY-associated TM helix. (376 aa) | ||||
ndh | NADH dehydrogenase. (432 aa) | ||||
crtN | Dehydrosqualene desaturase; Catalyzes the oxidation of the 1,2-dihydro- and 1,6- dihydro- isomeric forms of beta-NAD(P) back to beta-NAD(P)+. May serve to protect primary metabolism dehydrogenases from inhibition by the 1,2-dihydro- and 1,6-dihydro-beta-NAD(P) isomers; Belongs to the bacterial renalase family. (328 aa) | ||||
guaB | Inosine-5'-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (489 aa) | ||||
CEL30816.1 | NAD(P)H dehydrogenase (quinone); Belongs to the WrbA family. (198 aa) | ||||
CEL30460.1 | Peptidase propeptide and YPEB domain protein. (399 aa) | ||||
sthA | Soluble pyridine nucleotide transhydrogenase; Conversion of NADPH, generated by peripheral catabolic pathways, to NADH, which can enter the respiratory chain for energy generation; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (464 aa) | ||||
queF | NADPH-dependent 7-cyano-7-deazaguanine reductase; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1). (276 aa) | ||||
azoR_3 | FMN-dependent NADH-azoreductase. (213 aa) | ||||
nuoN | NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (487 aa) | ||||
nuoM | NADH-quinone oxidoreductase subunit M. (510 aa) | ||||
nuoL | NADH-quinone oxidoreductase subunit L. (617 aa) | ||||
nuoK | NADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa) | ||||
nuoJ | NADH-quinone oxidoreductase subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (166 aa) | ||||
nuoI | NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (182 aa) | ||||
nuoH | NADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (335 aa) | ||||
nuoG | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (904 aa) | ||||
nuoF | NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (451 aa) | ||||
nuoC | NADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (594 aa) | ||||
nuoB | NADH-quinone oxidoreductase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (224 aa) | ||||
ndhC | NAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (137 aa) | ||||
mrpD | Na(+)/H(+) antiporter subunit D. (559 aa) | ||||
mdaB_2 | Modulator of drug activity B. (267 aa) | ||||
azoR1_2 | FMN-dependent NADH-azoreductase 1; Catalyzes the reductive cleavage of azo bond in aromatic azo compounds to the corresponding amines. Requires NADH, but not NADPH, as an electron donor for its activity; Belongs to the azoreductase type 1 family. (203 aa) | ||||
azr | FMN-dependent NADPH-azoreductase. (185 aa) | ||||
ppsC_2 | Phthiocerol synthesis polyketide synthase type I PpsC. (332 aa) | ||||
ppsC_1 | Phthiocerol synthesis polyketide synthase type I PpsC. (320 aa) | ||||
CEL27641.1 | Hypothetical protein. (528 aa) | ||||
cysJ_2 | Sulfite reductase [NADPH] flavoprotein alpha-component. (152 aa) | ||||
mdaB_1 | Modulator of drug activity B. (196 aa) | ||||
azoR_1 | FMN-dependent NADH-azoreductase. (193 aa) | ||||
CEL27329.1 | PepSY-associated TM helix. (457 aa) | ||||
azoR1_1 | FMN-dependent NADH-azoreductase 1. (215 aa) | ||||
pntAA | NAD(P) transhydrogenase subunit alpha part 1. (373 aa) | ||||
pntB | NAD(P) transhydrogenase subunit beta; The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane; Belongs to the PNT beta subunit family. (477 aa) | ||||
ctaA | Heme A synthase. (359 aa) | ||||
qorA_1 | Quinone oxidoreductase 1. (325 aa) |