node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KGM25776.1 | KGM27419.1 | KS18_24455 | KS18_14975 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | 0.972 |
KGM25776.1 | KGM27475.1 | KS18_24455 | KS18_13570 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | 0.992 |
KGM25776.1 | KGM28063.1 | KS18_24455 | KS18_11720 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit chi; Binds to single-strand binding (SSB) protein and acts as a bridge between the DnaX clamp loader complex and the SSB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.972 |
KGM25776.1 | KGM29433.1 | KS18_24455 | KS18_00705 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit theta; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.812 |
KGM25776.1 | dnaE | KS18_24455 | KS18_15770 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit alpha; Catalyzes DNA-template-directed extension of the 3'- end of a DNA strand by one nucleotide at a time; main replicative polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.975 |
KGM25776.1 | dnaQ | KS18_24455 | KS18_06705 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit epsilon; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. | 0.767 |
KGM25776.1 | dnaX | KS18_24455 | KS18_08760 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunits gamma and tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. | 0.986 |
KGM25776.1 | holA | KS18_24455 | KS18_19285 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit delta; Required for the assembly and function of the DNAX complex which is required for the assembly of the beta subunit onto primed DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.983 |
KGM25776.1 | rnhA | KS18_24455 | KS18_06710 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ribonuclease H; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. | 0.668 |
KGM25776.1 | rnt | KS18_24455 | KS18_01230 | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ribonuclease T; Trims short 3' overhangs of a variety of RNA species, leaving a one or two nucleotide 3' overhang. Responsible for the end-turnover of tRNA: specifically removes the terminal AMP residue from uncharged tRNA (tRNA-C-C-A). Also appears to be involved in tRNA biosynthesis. | 0.570 |
KGM27379.1 | KGM27475.1 | KS18_14745 | KS18_13570 | Ribosome-associated protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | 0.538 |
KGM27379.1 | recF | KS18_14745 | KS18_13565 | Ribosome-associated protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Recombination protein F; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP; Belongs to the RecF family. | 0.707 |
KGM27419.1 | KGM25776.1 | KS18_14975 | KS18_24455 | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.972 |
KGM27419.1 | KGM27475.1 | KS18_14975 | KS18_13570 | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | 0.729 |
KGM27419.1 | KGM28063.1 | KS18_14975 | KS18_11720 | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | DNA polymerase III subunit chi; Binds to single-strand binding (SSB) protein and acts as a bridge between the DnaX clamp loader complex and the SSB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.966 |
KGM27419.1 | KGM29433.1 | KS18_14975 | KS18_00705 | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | DNA polymerase III subunit theta; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.805 |
KGM27419.1 | dnaE | KS18_14975 | KS18_15770 | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | DNA polymerase III subunit alpha; Catalyzes DNA-template-directed extension of the 3'- end of a DNA strand by one nucleotide at a time; main replicative polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.954 |
KGM27419.1 | dnaQ | KS18_14975 | KS18_06705 | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | DNA polymerase III subunit epsilon; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. | 0.751 |
KGM27419.1 | dnaX | KS18_14975 | KS18_08760 | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | DNA polymerase III subunits gamma and tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. | 0.967 |
KGM27419.1 | holA | KS18_14975 | KS18_19285 | DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. | DNA polymerase III subunit delta; Required for the assembly and function of the DNAX complex which is required for the assembly of the beta subunit onto primed DNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.964 |