STRINGSTRING
nqrE-2 nqrE-2 nqrA nqrA nqrB nqrB nqrC nqrC nqrD nqrD nqrE nqrE nqrF nqrF EDQ02226.1 EDQ02226.1 EDQ02229.1 EDQ02229.1 NuoA NuoA nuoB nuoB nuoC nuoC NuoF NuoF EDP99429.1 EDP99429.1 nuoH nuoH nuoI nuoI EDP99432.1 EDP99432.1 nuoK nuoK NuoL NuoL NuoM NuoM nuoN nuoN nqrF-2 nqrF-2 EDP99974.1 EDP99974.1 EDQ01207.1 EDQ01207.1 EDQ01208.1 EDQ01208.1 nqrA-2 nqrA-2 nqrB-2 nqrB-2 nqrC-2 nqrC-2 nqrD-2 nqrD-2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nqrE-2NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein NqrE; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (202 aa)
nqrANa(+)-translocating NADH-quinone reductase subunit A; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (456 aa)
nqrBNa(+)-translocating NADH-quinone reductase subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (415 aa)
nqrCNa(+)-translocating NADH-quinone reductase subunit C; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (260 aa)
nqrDNADH-ubiquinone oxidoreductase; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (207 aa)
nqrENADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein NqrE; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (202 aa)
nqrFNa(+)-translocating NADH-quinone reductase subunit F; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. The first step is catalyzed by NqrF, which accepts electrons from NADH and reduces ubiquinone-1 to ubisemiquinone by a one-electron transfer pathway. (405 aa)
EDQ02226.1COG2871 Na+-transporting NADH:ubiquinone oxidoreductase, subunit NqrF. (316 aa)
EDQ02229.1Hypothetical protein. (225 aa)
NuoANADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. (123 aa)
nuoBNADH dehydrogenase beta subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (218 aa)
nuoCNADH dehydrogenase I, C/D subunits; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (596 aa)
NuoFNADH dehydrogenase I, F subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (458 aa)
EDP99429.1NADH dehydrogenase gamma subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (960 aa)
nuoHNADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (318 aa)
nuoINADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (171 aa)
EDP99432.1NADH-ubiquinone/plastoquinone oxidoreductase, chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (208 aa)
nuoKNADH dehydrogenase kappa subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
NuoLCOG1009 NADH:ubiquinone oxidoreductase subunit 5 (chain L)/Multisubunit Na+/H+ antiporter, MnhA subunit. (629 aa)
NuoMCOG1008 NADH:ubiquinone oxidoreductase subunit 4 (chain M). (532 aa)
nuoNNADH dehydrogenase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (475 aa)
nqrF-2Na(+)-translocating NADH-quinone reductase subunit F; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. The first step is catalyzed by NqrF, which accepts electrons from NADH and reduces ubiquinone-1 to ubisemiquinone by a one-electron transfer pathway. (415 aa)
EDP99974.1Hypothetical protein; COG3182 Uncharacterized iron-regulated membrane protein. (534 aa)
EDQ01207.1Hypothetical protein; COG3182 Uncharacterized iron-regulated membrane protein. (214 aa)
EDQ01208.1Hypothetical protein; COG3182 Uncharacterized iron-regulated membrane protein. (251 aa)
nqrA-2Na(+)-translocating NADH-quinone reductase subunit A; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (444 aa)
nqrB-2Na(+)-translocating NADH-quinone reductase subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (399 aa)
nqrC-2Na(+)-translocating NADH-quinone reductase subunit C; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (264 aa)
nqrD-2NADH-ubiquinone oxidoreductase; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (210 aa)
Your Current Organism:
Shewanella benthica
NCBI taxonomy Id: 314608
Other names: S. benthica KT99, Shewanella benthica KT99, Shewanella benthica str. KT99, Shewanella benthica strain KT99
Server load: medium (52%) [HD]