STRINGSTRING
RPE_0505 RPE_0505 RPE_0603 RPE_0603 RPE_0624 RPE_0624 RPE_0948 RPE_0948 RPE_0949 RPE_0949 RPE_1071 RPE_1071 RPE_1207 RPE_1207 RPE_1341 RPE_1341 RPE_1417 RPE_1417 RPE_1418 RPE_1418 nuoA nuoA nuoB1 nuoB1 nuoC nuoC RPE_1713 RPE_1713 RPE_1714 RPE_1714 RPE_1715 RPE_1715 nuoH1 nuoH1 nuoI1 nuoI1 RPE_1718 RPE_1718 nuoK nuoK RPE_1720 RPE_1720 RPE_1721 RPE_1721 nuoN nuoN nuoA-2 nuoA-2 nuoB2 nuoB2 nuoC-2 nuoC-2 nuoD nuoD RPE_2525 RPE_2525 RPE_2527 RPE_2527 RPE_2529 RPE_2529 nuoH2 nuoH2 nuoI2 nuoI2 RPE_2532 RPE_2532 nuoK-2 nuoK-2 RPE_2534 RPE_2534 RPE_2535 RPE_2535 nuoN-2 nuoN-2 RPE_3768 RPE_3768 RPE_3865 RPE_3865 RPE_3866 RPE_3866 RPE_3977 RPE_3977 RPE_4202 RPE_4202 RPE_4489 RPE_4489 RPE_4542 RPE_4542 RPE_4751 RPE_4751 RPE_4752 RPE_4752 RPE_4756 RPE_4756 RPE_4760 RPE_4760
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RPE_0505PFAM: NAD-dependent epimerase/dehydratase; 3-beta hydroxysteroid dehydrogenase/isomerase; dTDP-4-dehydrorhamnose reductase; NmrA family protein; Male sterility C-terminal domain; KEGG: rpc:RPC_0437 NAD-dependent epimerase/dehydratase. (328 aa)
RPE_0603PFAM: 4Fe-4S ferredoxin, iron-sulfur binding domain protein; KEGG: rpa:RPA0662 ferredoxin. (81 aa)
RPE_0624PFAM: cytochrome c oxidase, subunit III; KEGG: bja:blr3212 nitric oxide reductase subunit E. (197 aa)
RPE_0948Ubiquinol-cytochrome c reductase, iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (175 aa)
RPE_0949Cytochrome c1; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (691 aa)
RPE_1071KEGG: rpc:RPC_1153 hypothetical protein. (153 aa)
RPE_1207Ubiquinol-cytochrome c reductase, iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (175 aa)
RPE_1341PFAM: cytochrome c, class I; KEGG: rpc:RPC_1307 cytochrome c, class I. (145 aa)
RPE_1417PFAM: peptidase M16 domain protein; KEGG: rpc:RPC_1392 peptidase M16-like; Belongs to the peptidase M16 family. (469 aa)
RPE_1418PFAM: peptidase M16 domain protein; KEGG: rpc:RPC_1391 peptidase M16-like. (458 aa)
nuoANADH-ubiquinone/plastoquinone oxidoreductase, chain 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (130 aa)
nuoB1NADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (205 aa)
nuoCNADH dehydrogenase I, D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (581 aa)
RPE_1713PFAM: NADH dehydrogenase (ubiquinone), 24 kDa subunit; KEGG: rpc:RPC_4068 NADH dehydrogenase (ubiquinone), 24 kDa subunit. (157 aa)
RPE_1714PFAM: Respiratory-chain NADH dehydrogenase domain, 51 kDa subunit; KEGG: rpc:RPC_4067 NADH dehydrogenase (quinone). (428 aa)
RPE_1715TIGRFAM: NADH-quinone oxidoreductase, chain G; PFAM: ferredoxin; molybdopterin oxidoreductase Fe4S4 region; KEGG: rpc:RPC_4066 NADH-quinone oxidoreductase, chain G. (871 aa)
nuoH1Respiratory-chain NADH dehydrogenase, subunit 1; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (319 aa)
nuoI1NADH-quinone oxidoreductase, chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (173 aa)
RPE_1718NADH-ubiquinone/plastoquinone oxidoreductase, chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (166 aa)
nuoKNADH-ubiquinone oxidoreductase, chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa)
RPE_1720KEGG: rpc:RPC_4061 proton-translocating NADH-quinone oxidoreductase, chain L; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L; PFAM: NADH-Ubiquinone oxidoreductase (complex I), chain 5/L domain protein; NADH/Ubiquinone/plastoquinone (complex I). (655 aa)
RPE_1721KEGG: rpc:RPC_4060 proton-translocating NADH-quinone oxidoreductase, chain M; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH/Ubiquinone/plastoquinone (complex I). (480 aa)
nuoNNADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (456 aa)
nuoA-2NADH-ubiquinone/plastoquinone oxidoreductase, chain 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (121 aa)
nuoB2NADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (200 aa)
nuoC-2NADH (or F420H2) dehydrogenase, subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (201 aa)
nuoDNADH dehydrogenase I, D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (396 aa)
RPE_2525KEGG: rpc:RPC_2406 NADH-quinone oxidoreductase, E subunit; TIGRFAM: NADH-quinone oxidoreductase, E subunit; PFAM: NADH dehydrogenase (ubiquinone), 24 kDa subunit. (249 aa)
RPE_2527NADH-quinone oxidoreductase, F subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (441 aa)
RPE_2529NADH-quinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (691 aa)
nuoH2Respiratory-chain NADH dehydrogenase, subunit 1; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (341 aa)
nuoI2NADH-quinone oxidoreductase, chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (162 aa)
RPE_2532NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (212 aa)
nuoK-2NADH-ubiquinone oxidoreductase, chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa)
RPE_2534KEGG: rpc:RPC_2415 proton-translocating NADH-quinone oxidoreductase, chain L; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L; PFAM: NADH-Ubiquinone oxidoreductase (complex I), chain 5/L domain protein; NADH/Ubiquinone/plastoquinone (complex I). (700 aa)
RPE_2535KEGG: rpc:RPC_2416 proton-translocating NADH-quinone oxidoreductase, chain M; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH/Ubiquinone/plastoquinone (complex I). (505 aa)
nuoN-2Proton-translocating NADH-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (478 aa)
RPE_3768PFAM: cytochrome c, class I; KEGG: rpc:RPC_3730 cytochrome c, class I. (184 aa)
RPE_3865PFAM: cytochrome c oxidase, subunit II; KEGG: rpc:RPC_3849 cytochrome c oxidase, subunit II. (560 aa)
RPE_3866PFAM: cytochrome c oxidase, subunit I; KEGG: rpc:RPC_3850 cytochrome-c oxidase; Belongs to the heme-copper respiratory oxidase family. (841 aa)
RPE_3977Ubiquinol-cytochrome c reductase, iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (178 aa)
RPE_4202PFAM: NAD-dependent epimerase/dehydratase; KEGG: rpc:RPC_4149 NAD-dependent epimerase/dehydratase. (295 aa)
RPE_4489KEGG: rpc:RPC_4419 hypothetical protein. (227 aa)
RPE_4542PFAM: 4Fe-4S ferredoxin, iron-sulfur binding domain protein; KEGG: rpc:RPC_4473 4Fe-4S ferredoxin, iron-sulfur binding. (64 aa)
RPE_4751Cytochrome-c oxidase; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (283 aa)
RPE_4752Cytochrome-c oxidase; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (546 aa)
RPE_4756PFAM: cytochrome c oxidase, subunit III; KEGG: rpc:RPC_4792 cytochrome c oxidase, subunit III. (285 aa)
RPE_4760PFAM: peptidase M16 domain protein; KEGG: rpc:RPC_4796 peptidase M16-like; Belongs to the peptidase M16 family. (429 aa)
Your Current Organism:
Rhodopseudomonas palustris BisA53
NCBI taxonomy Id: 316055
Other names: R. palustris BisA53, Rhodopseudomonas palustris str. BisA53, Rhodopseudomonas palustris strain BisA53
Server load: low (20%) [HD]