Your Input: | |||||
THI1-5 | Thiamine thiazole synthase, chloroplastic; Involved in biosynthesis of the thiamine precursor thiazole. Catalyzes the conversion of NAD and glycine to adenosine diphosphate 5- (2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid (ADT), an adenylated thiazole intermediate. The reaction includes an iron- dependent sulfide transfer from a conserved cysteine residue of the protein to a thiazole intermediate. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme. May have additional roles in adaptation to various stress conditions and in DNA damage tolerance; B [...] (397 aa) | ||||
PHYPA_026215 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (478 aa) | ||||
GATB | Glutamyl-tRNA(Gln) amidotransferase subunit B, chloroplastic/mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in chloroplasts and mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). Belongs to the GatB/GatE family. GatB subfamily. (669 aa) | ||||
PHYPA_025813 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (728 aa) | ||||
PHYPA_025666 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (594 aa) | ||||
PHYPA_027009 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (495 aa) | ||||
THI1-3 | Thiamine thiazole synthase, chloroplastic; Involved in biosynthesis of the thiamine precursor thiazole. Catalyzes the conversion of NAD and glycine to adenosine diphosphate 5- (2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid (ADT), an adenylated thiazole intermediate. The reaction includes an iron- dependent sulfide transfer from a conserved cysteine residue of the protein to a thiazole intermediate. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme. May have additional roles in adaptation to various stress conditions and in DNA damage tolerance; B [...] (361 aa) | ||||
THI1-2 | Thiamine thiazole synthase, chloroplastic; Involved in biosynthesis of the thiamine precursor thiazole. Catalyzes the conversion of NAD and glycine to adenosine diphosphate 5- (2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid (ADT), an adenylated thiazole intermediate. The reaction includes an iron- dependent sulfide transfer from a conserved cysteine residue of the protein to a thiazole intermediate. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme. May have additional roles in adaptation to various stress conditions and in DNA damage tolerance; B [...] (361 aa) | ||||
THI1 | Thiamine thiazole synthase, chloroplastic; Involved in biosynthesis of the thiamine precursor thiazole. Catalyzes the conversion of NAD and glycine to adenosine diphosphate 5- (2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid (ADT), an adenylated thiazole intermediate. The reaction includes an iron- dependent sulfide transfer from a conserved cysteine residue of the protein to a thiazole intermediate. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme. May have additional roles in adaptation to various stress conditions and in DNA damage tolerance; B [...] (413 aa) | ||||
PHYPA_028452 | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. (304 aa) | ||||
PHYPA_029973 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (432 aa) | ||||
PHYPA_029676 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (378 aa) | ||||
PHYPA_030603 | Translation factor GUF1 homolog, chloroplastic; Promotes chloroplast protein synthesis. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. (743 aa) | ||||
PHYPA_030556 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (297 aa) | ||||
PHYPA_031029 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (323 aa) | ||||
PHYPA_031030 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (287 aa) | ||||
PHYPA_030927 | Translocase of chloroplast; GTPase involved in protein precursor import into chloroplasts. Seems to recognize chloroplast-destined precursor proteins and regulate their presentation to the translocation channel through GTP hydrolysis. (353 aa) | ||||
PHYPA_030894 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (300 aa) | ||||
GATA | Glutamyl-tRNA(Gln) amidotransferase subunit A, chloroplastic/mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in chloroplasts and mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). (560 aa) | ||||
PHYPA_031148 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (546 aa) | ||||
PHYPA_031175 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (35 aa) | ||||
PHYPA_008867 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (268 aa) | ||||
Sig2 | RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of plastid-encoded RNA polymerase (PEP) to specific initiation sites and are then released. (579 aa) | ||||
psaA | Photosystem I P700 chlorophyll a apoprotein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (750 aa) | ||||
psaB | Photosystem I P700 chlorophyll a apoprotein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (734 aa) | ||||
rps14-2 | 30S ribosomal protein S14, chloroplastic; Binds 16S rRNA, required for the assembly of 30S particles. (100 aa) | ||||
PpLhcb1 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (267 aa) | ||||
PpLhcb2 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (267 aa) | ||||
PpPOR2 | NADPH-protochlorophyllide oxidoreductase; Phototransformation of protochlorophyllide (Pchlide) to chlorophyllide (Chlide); Belongs to the short-chain dehydrogenases/reductases (SDR) family. POR subfamily. (402 aa) | ||||
ftsZ1-1 | Putative plastid division protein FtsZ1-1. (444 aa) | ||||
ftsZ3 | Putative plastid division protein FtsZ3. (490 aa) | ||||
rps7-2 | 30S ribosomal protein S7, chloroplastic; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. (155 aa) | ||||
ndhB | NAD(P)H-quinone oxidoreductase subunit 2, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (501 aa) | ||||
psbM | Photosystem II reaction center protein M; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (34 aa) | ||||
ycf66 | Uncharacterized protein. (141 aa) | ||||
petN | Cytochrome b6-f complex subunit 8; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (29 aa) | ||||
petD | Cytochrome b6-f complex subunit 4; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (160 aa) | ||||
ycf4 | Photosystem I assembly protein Ycf4; Seems to be required for the assembly of the photosystem I complex; Belongs to the Ycf4 family. (184 aa) | ||||
psaI | Photosystem I reaction center subunit VIII; May help in the organization of the PsaL subunit. Belongs to the PsaI family. (36 aa) | ||||
atpE | ATP synthase epsilon chain, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. (140 aa) | ||||
cemA | Chloroplast envelope membrane protein; May be involved in proton extrusion. Indirectly promotes efficient inorganic carbon uptake into chloroplasts. Belongs to the Cema family. (439 aa) | ||||
ndhC | NAD(P)H-quinone oxidoreductase subunit 3, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (121 aa) | ||||
ndhK | NAD(P)H-quinone oxidoreductase subunit K, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 20 kDa subunit family. (261 aa) | ||||
ndhJ | NAD(P)H-quinone oxidoreductase subunit J, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (169 aa) | ||||
chlL | Light-independent protochlorophyllide reductase iron-sulfur ATP-binding protein; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The L component serves as a unique electron donor to the NB-component of the complex, and binds Mg-ATP. Belongs to the NifH/BchL/ChlL family. (295 aa) | ||||
ndhF | NAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (720 aa) | ||||
rpl21 | 50S ribosomal protein L21, chloroplastic; This protein binds to 23S rRNA. (114 aa) | ||||
rpl32 | 50S ribosomal protein L32, chloroplastic. (59 aa) | ||||
ndhD | NAD(P)H-quinone oxidoreductase chain 4, chloroplastic. (501 aa) | ||||
psaC | Photosystem I iron-sulfur center; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, [...] (81 aa) | ||||
ndhE | NAD(P)H-quinone oxidoreductase subunit 4L, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (100 aa) | ||||
ndhG | NAD(P)H-quinone oxidoreductase subunit 6, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (200 aa) | ||||
ndhI | NAD(P)H-quinone oxidoreductase subunit I, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 23 kDa subunit family. (181 aa) | ||||
ndhA | NAD(P)H-quinone oxidoreductase subunit 1, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (368 aa) | ||||
ndhH | NAD(P)H-quinone oxidoreductase subunit H, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (391 aa) | ||||
rps15 | 30S ribosomal protein S15, chloroplastic; Belongs to the universal ribosomal protein uS15 family. (88 aa) | ||||
TIC214 | Protein TIC 214; Involved in protein precursor import into chloroplasts. May be part of an intermediate translocation complex acting as a protein- conducting channel at the inner envelope. (1603 aa) | ||||
chlN | Light-independent protochlorophyllide reductase subunit N; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex; Belongs to the BchN/ChlN family. (474 aa) | ||||
rps4-2 | 30S ribosomal protein S4, chloroplastic; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. Belongs to the universal ribosomal protein uS4 family. (201 aa) | ||||
ycf3 | Photosystem I assembly protein Ycf3; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits; Belongs to the Ycf3 family. (168 aa) | ||||
psbZ | Photosystem II reaction center protein Z; Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna; Belongs to the PsbZ family. (62 aa) | ||||
psbC | Photosystem II CP43 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily. (473 aa) | ||||
psbD | Photosystem II D2 protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. (353 aa) | ||||
psbA | Photosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa) | ||||
matK | Maturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (505 aa) | ||||
chlB | Light-independent protochlorophyllide reductase subunit B; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex; Belongs to the ChlB/BchB/BchZ family. (510 aa) | ||||
psbK | Photosystem II reaction center protein K; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (58 aa) | ||||
psbI | Photosystem II reaction center protein I; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (36 aa) | ||||
petB | Cytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (215 aa) | ||||
psbH | Photosystem II reaction center protein H; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbH family. (74 aa) | ||||
psbN | Protein PsbN; May play a role in photosystem I and II biogenesis. Belongs to the PsbN family. (43 aa) | ||||
psbT | Photosystem II reaction center protein T; Seems to play a role in the dimerization of PSII. Belongs to the PsbT family. (35 aa) | ||||
psbB | Photosystem II CP47 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily. (512 aa) | ||||
clpP | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (199 aa) | ||||
rps12-2 | 30S ribosomal protein S12, chloroplastic; With S4 and S5 plays an important role in translational accuracy. Located at the interface of the 30S and 50S subunits (By similarity). (123 aa) | ||||
rpl20 | 50S ribosomal protein L20, chloroplastic; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (115 aa) | ||||
rps18 | 30S ribosomal protein S18, chloroplastic; Belongs to the bacterial ribosomal protein bS18 family. (79 aa) | ||||
rpl33 | 50S ribosomal protein L33, chloroplastic. (66 aa) | ||||
psaJ | Photosystem I reaction center subunit IX; May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family. (41 aa) | ||||
petG | Cytochrome b6-f complex subunit 5; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetG is required for either the stability or assembly of the cytochrome b6-f complex. (37 aa) | ||||
petL | Cytochrome b6-f complex subunit 6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetL is important for photoautotrophic growth as well as for electron transfer efficiency and stability of the cytochrome b6-f complex. (31 aa) | ||||
psbE | Cytochrome b559 subunit alpha; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (83 aa) | ||||
psbF | Cytochrome b559 subunit beta; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (39 aa) | ||||
psbL | Photosystem II reaction center protein L; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. (38 aa) | ||||
psbJ | Photosystem II reaction center protein J; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (40 aa) | ||||
orf40 | Uncharacterized protein. (40 aa) | ||||
orf197 | Uncharacterized protein. (197 aa) | ||||
petA | Cytochrome f; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (319 aa) | ||||
infA | Translation initiation factor IF-1, chloroplastic; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (78 aa) | ||||
rps8 | 30S ribosomal protein S8, chloroplastic; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit. (132 aa) | ||||
rpl14 | 50S ribosomal protein L14, chloroplastic; Binds to 23S rRNA. (122 aa) | ||||
rpl16-2 | 50S ribosomal protein L16, chloroplastic; Belongs to the universal ribosomal protein uL16 family. (138 aa) | ||||
rps3-2 | 30S ribosomal protein S3, chloroplastic; Belongs to the universal ribosomal protein uS3 family. (218 aa) | ||||
rpl22 | 50S ribosomal protein L22, chloroplastic; This protein binds specifically to 23S rRNA; Belongs to the universal ribosomal protein uL22 family. (118 aa) | ||||
rps19-2 | 30S ribosomal protein S19, chloroplastic; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa) | ||||
rpl23 | 50S ribosomal protein L23, chloroplastic; Binds to 23S rRNA. (91 aa) | ||||
psaM | Photosystem I reaction center subunit XII. (32 aa) | ||||
atpA | ATP synthase subunit alpha, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (507 aa) | ||||
atpF | ATP synthase subunit b, chloroplastic; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (184 aa) | ||||
atpH | ATP synthase subunit c, chloroplastic; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa) | ||||
atpI | ATP synthase subunit a, chloroplastic; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (249 aa) | ||||
rps2-2 | 30S ribosomal protein S2, chloroplastic. (236 aa) | ||||
rps11-2 | 30S ribosomal protein S11, chloroplastic; Belongs to the universal ribosomal protein uS11 family. (130 aa) | ||||
rpl36 | 50S ribosomal protein L36, chloroplastic. (37 aa) | ||||
accD | Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (315 aa) | ||||
atpB | ATP synthase subunit beta, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (494 aa) | ||||
ycf2 | Protein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (2259 aa) | ||||
ycf12 | Photosystem II reaction center protein Ycf12; A core subunit of photosystem II (PSII); Belongs to the Ycf12 family. (33 aa) | ||||
rpl2 | 50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (277 aa) | ||||
rpoC2 | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1330 aa) | ||||
rpoC1 | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the RNA polymerase beta' chain family. RpoC1 subfamily. (679 aa) | ||||
rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1085 aa) | ||||
rbcL | Ribulose bisphosphate carboxylase large chain; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site. Belongs to the RuBisCO large chain family. Type I subfamily. (475 aa) | ||||
PHYPA_015170 | Plastid division protein FtsZ 2-1. (458 aa) | ||||
PHYPA_005816 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (296 aa) | ||||
PHYPA_014643 | Phospho-2-dehydro-3-deoxyheptonate aldolase. (532 aa) | ||||
PHYPA_013991 | Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (149 aa) | ||||
PHYPA_000116 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (532 aa) | ||||
PHYPA_030328 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (263 aa) | ||||
PSBS | Photosystem II 22kDa chloroplast protein. (279 aa) | ||||
PHYPA_025494 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (273 aa) | ||||
PHYPA_014745 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (524 aa) | ||||
PHYPA_029460 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (348 aa) | ||||
PHYPA_012218 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (244 aa) | ||||
PHYPA_019162 | Zeta-carotene desaturase; Catalyzes the conversion of zeta-carotene to lycopene via the intermediary of neurosporene. It carries out two consecutive desaturations (introduction of double bonds) at positions C-7 and C-7'. (593 aa) | ||||
PHYPA_007358 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (263 aa) | ||||
PHYPA_016754 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (296 aa) | ||||
PHYPA_030090 | Zeta-carotene desaturase; Catalyzes the conversion of zeta-carotene to lycopene via the intermediary of neurosporene. It carries out two consecutive desaturations (introduction of double bonds) at positions C-7 and C-7'. (597 aa) | ||||
PHYPA_013957 | Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (160 aa) | ||||
PHYPA_005942 | Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (145 aa) | ||||
POR2 | NADPH-protochlorophyllide oxidoreductase; Phototransformation of protochlorophyllide (Pchlide) to chlorophyllide (Chlide); Belongs to the short-chain dehydrogenases/reductases (SDR) family. POR subfamily. (402 aa) | ||||
PHYPA_019734 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (603 aa) | ||||
PHYPA_019606 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (244 aa) | ||||
PHYPA_019332 | Protein-ribulosamine 3-kinase, chloroplastic; Belongs to the fructosamine kinase family. (343 aa) | ||||
PHYPA_003692 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (266 aa) | ||||
PHYPA_003656 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (524 aa) | ||||
PHYPA_007148 | Translocase of chloroplast; GTPase involved in protein precursor import into chloroplasts. Seems to recognize chloroplast-destined precursor proteins and regulate their presentation to the translocation channel through GTP hydrolysis. (350 aa) | ||||
PHYPA_020213 | Mg-protoporphyrin IX chelatase; Involved in chlorophyll biosynthesis. Catalyzes the insertion of magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX. Belongs to the Mg-chelatase subunits D/I family. (779 aa) | ||||
PHYPA_017103 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (263 aa) | ||||
PHYPA_000880 | Imidazole glycerol phosphate synthase hisHF; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The glutaminase domain produces the ammonia necessary for the cyclase domain to produce IGP and AICAR from PRFAR. The ammonia is channeled to the active site of the cyclase domain. In the C-terminal section; belongs to the HisA/HisF family. (617 aa) | ||||
PHYPA_000286 | Phospho-2-dehydro-3-deoxyheptonate aldolase. (536 aa) | ||||
PHYPA_025699 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (265 aa) | ||||
PHYPA_003398 | Phospho-2-dehydro-3-deoxyheptonate aldolase. (537 aa) | ||||
PHYPA_022864 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (265 aa) | ||||
PHYPA_006353 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (267 aa) | ||||
LIP1P | Lipoyl synthase, chloroplastic; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. (381 aa) | ||||
PHYPA_010611 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (526 aa) | ||||
PHYPA_003990 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (267 aa) | ||||
PHYPA_003988 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (267 aa) | ||||
PHYPA_003701 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (267 aa) | ||||
PHYPA_001705 | RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of plastid-encoded RNA polymerase (PEP) to specific initiation sites and are then released. (589 aa) | ||||
PHYPA_001703 | RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of plastid-encoded RNA polymerase (PEP) to specific initiation sites and are then released. (590 aa) | ||||
PHYPA_001584 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (264 aa) | ||||
PHYPA_001583 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (264 aa) | ||||
PHYPA_001458 | Phospho-2-dehydro-3-deoxyheptonate aldolase. (531 aa) | ||||
PHYPA_001444 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (543 aa) | ||||
PHYPA_000425 | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. (370 aa) | ||||
PHYPA_000401 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (693 aa) | ||||
PHYPA_003678 | Phospho-2-dehydro-3-deoxyheptonate aldolase. (552 aa) | ||||
GATC | Glutamyl-tRNA(Gln) amidotransferase subunit C, chloroplastic/mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in chloroplasts and mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). Belongs to the GatC family. (139 aa) | ||||
PHYPA_003463 | Cytochrom_C_asm domain-containing protein. (521 aa) | ||||
PHYPA_003251 | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. (258 aa) | ||||
PHYPA_002724 | Mg-protoporphyrin IX chelatase; Involved in chlorophyll biosynthesis. Catalyzes the insertion of magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX. Belongs to the Mg-chelatase subunits D/I family. (433 aa) | ||||
PHYPA_002429 | Arogenate dehydratase; Converts the prephenate produced from the shikimate- chorismate pathway into phenylalanine. (424 aa) | ||||
PHYPA_002199 | Probable alanine--tRNA ligase, chloroplastic; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged tRNA(Ala) via its editing domain. Belongs to the class-II aminoacyl-tRNA synthetase family. (1007 aa) | ||||
PHYPA_005397 | Cytochrome b6-f complex iron-sulfur subunit; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (232 aa) | ||||
PHYPA_004788 | Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (152 aa) | ||||
PHYPA_004347 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (244 aa) | ||||
PHYPA_004124 | Uncharacterized protein. (233 aa) | ||||
PHYPA_006894 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (50 aa) | ||||
PHYPA_006895 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (244 aa) | ||||
PHYPA_006873 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (207 aa) | ||||
PHYPA_006919 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (176 aa) | ||||
PHYPA_006870 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (299 aa) | ||||
PHYPA_006083 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (278 aa) | ||||
PHYPA_005941 | Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (145 aa) | ||||
PHYPA_008049 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (311 aa) | ||||
PHYPA_007728 | ADP,ATP carrier protein. (711 aa) | ||||
PHYPA_007688 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (123 aa) | ||||
MENG | 2-phytyl-1,4-beta-naphthoquinone methyltransferase, chloroplastic; Involved in the biosynthesis of phylloquinone (vitamin K1). Methyltransferase required for the conversion of 2-phytyl-1,4-beta- naphthoquinol to phylloquinol. (306 aa) | ||||
PHYPA_009318 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (318 aa) | ||||
PHYPA_008716 | ADP,ATP carrier protein. (711 aa) | ||||
PHYPA_008710 | Rieske domain-containing protein. (296 aa) | ||||
PHYPA_008613 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (310 aa) | ||||
PHYPA_008515 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (464 aa) | ||||
PHYPA_010712 | Phospho-2-dehydro-3-deoxyheptonate aldolase. (536 aa) | ||||
PHYPA_010694 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (536 aa) | ||||
PHYPA_010629 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (533 aa) | ||||
PHYPA_011231 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (232 aa) | ||||
PHYPA_011030 | Cytochrome b6-f complex iron-sulfur subunit; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (231 aa) | ||||
PURA-2 | Adenylosuccinate synthetase, chloroplastic; Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first commited step in the biosynthesis of AMP from IMP. (514 aa) | ||||
PHYPA_012725 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (619 aa) | ||||
PHYPA_012721 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (600 aa) | ||||
PHYPA_012165 | Arginine biosynthesis bifunctional protein ArgJ, chloroplastic; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis: the synthesis of acetylglutamate from glutamate and acetyl-CoA, and of ornithine by transacetylation between acetylornithine and glutamate. (520 aa) | ||||
PHYPA_014361 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (270 aa) | ||||
PHYPA_014362 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (289 aa) | ||||
PHYPA_014364 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (273 aa) | ||||
PHYPA_013337 | Mg-protoporphyrin IX chelatase; Involved in chlorophyll biosynthesis. Catalyzes the insertion of magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX. Belongs to the Mg-chelatase subunits D/I family. (431 aa) | ||||
PHYPA_013343 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (297 aa) | ||||
PHYPA_014642 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (539 aa) | ||||
PHYPA_016624 | Phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase. (324 aa) | ||||
PHYPA_016490 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (272 aa) | ||||
PHYPA_016156 | Elongation factor G, chloroplastic; Chloroplast-localized elongation factor EF-G involved in protein synthesis in plastids. Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl- tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. (786 aa) | ||||
PHYPA_015746 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (636 aa) | ||||
PHYPA_015745 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (642 aa) | ||||
PHYPA_017397 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (245 aa) | ||||
PHYPA_018512 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (374 aa) | ||||
PHYPA_018502 | Phospho-2-dehydro-3-deoxyheptonate aldolase. (580 aa) | ||||
PHYPA_018441 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (541 aa) | ||||
PURA | Adenylosuccinate synthetase, chloroplastic; Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first commited step in the biosynthesis of AMP from IMP. (514 aa) | ||||
PHYPA_019884 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (428 aa) | ||||
PHYPA_019729 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (591 aa) | ||||
PHYPA_021429 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (318 aa) | ||||
GATA-2 | Glutamyl-tRNA(Gln) amidotransferase subunit A, chloroplastic/mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in chloroplasts and mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). (560 aa) | ||||
PHYPA_021053 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (166 aa) | ||||
PHYPA_021044 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (287 aa) | ||||
PHYPA_020879 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (300 aa) | ||||
PHYPA_020545 | Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (166 aa) | ||||
PHYPA_020476 | Uncharacterized protein. (233 aa) | ||||
PHYPA_020474 | Histidinol dehydrogenase, chloroplastic; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (449 aa) | ||||
PHYPA_020383 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (142 aa) | ||||
PHYPA_022553 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (289 aa) | ||||
PHYPA_022505 | Arogenate dehydratase; Converts the prephenate produced from the shikimate- chorismate pathway into phenylalanine. (434 aa) | ||||
PHYPA_022298 | Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (148 aa) | ||||
PHYPA_022054 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (555 aa) | ||||
PHYPA_021786 | Zeta-carotene desaturase; Catalyzes the conversion of zeta-carotene to lycopene via the intermediary of neurosporene. It carries out two consecutive desaturations (introduction of double bonds) at positions C-7 and C-7'. (588 aa) | ||||
PHYPA_021726 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (377 aa) | ||||
PHYPA_023390 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (623 aa) | ||||
PHYPA_023166 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (479 aa) | ||||
PHYPA_022718 | Arogenate dehydratase; Converts the prephenate produced from the shikimate- chorismate pathway into phenylalanine. (428 aa) | ||||
PHYPA_024396 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (308 aa) | ||||
PHYPA_024375 | Acyl-[acyl-carrier-protein] hydrolase; Plays an essential role in chain termination during de novo fatty acid synthesis; Belongs to the acyl-ACP thioesterase family. (472 aa) | ||||
PHYPA_024062 | Arogenate dehydratase; Converts the prephenate produced from the shikimate- chorismate pathway into phenylalanine. (427 aa) | ||||
PHYPA_023878 | Glucose-1-phosphate adenylyltransferase; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (532 aa) | ||||
PHYPA_023846 | Starch synthase, chloroplastic/amyloplastic; Belongs to the glycosyltransferase 1 family. Bacterial/plant glycogen synthase subfamily. (695 aa) | ||||
PHYPA_025495 | Chlorophyll a-b binding protein, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated; Belongs to the light-harvesting chlorophyll a/b-binding (LHC) protein family. (273 aa) | ||||
THI1-4 | Thiamine thiazole synthase, chloroplastic; Involved in biosynthesis of the thiamine precursor thiazole. Catalyzes the conversion of NAD and glycine to adenosine diphosphate 5- (2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid (ADT), an adenylated thiazole intermediate. The reaction includes an iron- dependent sulfide transfer from a conserved cysteine residue of the protein to a thiazole intermediate. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme. May have additional roles in adaptation to various stress conditions and in DNA damage tolerance; B [...] (362 aa) |