Your Input: | |||||
rpl2 | 50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (277 aa) | ||||
atp9 | ATP synthase subunit 9, mitochondrial; Belongs to the ATPase C chain family. (74 aa) | ||||
rps14 | Ribosomal protein S14. (99 aa) | ||||
rps19 | Ribosomal protein S19; Belongs to the universal ribosomal protein uS19 family. (93 aa) | ||||
rpl2-2 | Ribosomal protein L2. (463 aa) | ||||
psaA | Photosystem I P700 chlorophyll a apoprotein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (750 aa) | ||||
psaB | Photosystem I P700 chlorophyll a apoprotein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (734 aa) | ||||
rps14-2 | 30S ribosomal protein S14, chloroplastic; Binds 16S rRNA, required for the assembly of 30S particles. (100 aa) | ||||
atp6 | ATP synthase subunit a. (252 aa) | ||||
nad4 | NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (495 aa) | ||||
sdh3 | Succinate dehydrogenase subunit 3. (131 aa) | ||||
atp4 | ATPase subunit 4. (183 aa) | ||||
cox1 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (522 aa) | ||||
rps19-2 | 30S ribosomal protein S19, chloroplastic; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa) | ||||
ndhJ | NAD(P)H-quinone oxidoreductase subunit J, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (169 aa) | ||||
nad7 | NADH dehydrogenase subunit 7; Belongs to the complex I 49 kDa subunit family. (393 aa) | ||||
ycf2 | Protein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (2259 aa) |