Your Input: | |||||
ycf3 | Photosystem I assembly protein Ycf3; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits; Belongs to the Ycf3 family. (168 aa) | ||||
rpl2 | 50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (277 aa) | ||||
rps19 | Ribosomal protein S19; Belongs to the universal ribosomal protein uS19 family. (93 aa) | ||||
rpl2-2 | Ribosomal protein L2. (463 aa) | ||||
rps12 | Ribosomal protein S12; Belongs to the universal ribosomal protein uS12 family. (126 aa) | ||||
atpA | ATP synthase subunit alpha, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (507 aa) | ||||
rps19-2 | 30S ribosomal protein S19, chloroplastic; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa) | ||||
infA | Translation initiation factor IF-1, chloroplastic; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (78 aa) | ||||
petG | Cytochrome b6-f complex subunit 5; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetG is required for either the stability or assembly of the cytochrome b6-f complex. (37 aa) | ||||
rps12-2 | 30S ribosomal protein S12, chloroplastic; With S4 and S5 plays an important role in translational accuracy. Located at the interface of the 30S and 50S subunits (By similarity). (123 aa) | ||||
clpP | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (199 aa) | ||||
psbI | Photosystem II reaction center protein I; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (36 aa) | ||||
psbC | Photosystem II CP43 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily. (473 aa) | ||||
TIC214 | Protein TIC 214; Involved in protein precursor import into chloroplasts. May be part of an intermediate translocation complex acting as a protein- conducting channel at the inner envelope. (1603 aa) | ||||
psaC | Photosystem I iron-sulfur center; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, [...] (81 aa) | ||||
ndhD | NAD(P)H-quinone oxidoreductase chain 4, chloroplastic. (501 aa) | ||||
rpl32 | 50S ribosomal protein L32, chloroplastic. (59 aa) | ||||
ndhF | NAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (720 aa) | ||||
petN | Cytochrome b6-f complex subunit 8; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (29 aa) | ||||
psbM | Photosystem II reaction center protein M; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (34 aa) |