Your Input: | |||||
rps14 | Ribosomal protein S14. (99 aa) | ||||
rpl16 | Ribosomal protein L16; Belongs to the universal ribosomal protein uL16 family. (135 aa) | ||||
rps19 | Ribosomal protein S19; Belongs to the universal ribosomal protein uS19 family. (93 aa) | ||||
rpl2-2 | Ribosomal protein L2. (463 aa) | ||||
nad3 | NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (118 aa) | ||||
nad9 | NADH dehydrogenase subunit 9; Belongs to the complex I 30 kDa subunit family. (195 aa) | ||||
nad1 | NADH-ubiquinone oxidoreductase chain 1; Belongs to the complex I subunit 1 family. (328 aa) | ||||
cox2 | Cytochrome c oxidase subunit 2; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. (253 aa) | ||||
nad6 | NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (201 aa) | ||||
atp6 | ATP synthase subunit a. (252 aa) | ||||
rps7 | Ribosomal protein S7. (239 aa) | ||||
nad5 | NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (676 aa) | ||||
sdh3 | Succinate dehydrogenase subunit 3. (131 aa) | ||||
nad4L | NADH dehydrogenase subunit 4L. (100 aa) | ||||
ccmFN | Cytochrome c biogenesis factor N. (607 aa) | ||||
ccmC | Putative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (270 aa) | ||||
ccmB | Cytochrome c biogenesis B. (175 aa) | ||||
rps19-2 | 30S ribosomal protein S19, chloroplastic; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa) | ||||
rpl16-2 | 50S ribosomal protein L16, chloroplastic; Belongs to the universal ribosomal protein uL16 family. (138 aa) | ||||
psbC | Photosystem II CP43 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily. (473 aa) | ||||
ndhA | NAD(P)H-quinone oxidoreductase subunit 1, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (368 aa) | ||||
ndhJ | NAD(P)H-quinone oxidoreductase subunit J, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (169 aa) | ||||
ndhK | NAD(P)H-quinone oxidoreductase subunit K, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 20 kDa subunit family. (261 aa) | ||||
rps7-2 | 30S ribosomal protein S7, chloroplastic; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. (155 aa) | ||||
rps14-2 | 30S ribosomal protein S14, chloroplastic; Binds 16S rRNA, required for the assembly of 30S particles. (100 aa) | ||||
rpl2 | 50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (277 aa) | ||||
nad7 | NADH dehydrogenase subunit 7; Belongs to the complex I 49 kDa subunit family. (393 aa) |